首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4915篇
  免费   338篇
  国内免费   1篇
  2023年   29篇
  2022年   24篇
  2021年   141篇
  2020年   74篇
  2019年   103篇
  2018年   156篇
  2017年   117篇
  2016年   166篇
  2015年   252篇
  2014年   290篇
  2013年   386篇
  2012年   440篇
  2011年   402篇
  2010年   237篇
  2009年   201篇
  2008年   264篇
  2007年   294篇
  2006年   226篇
  2005年   215篇
  2004年   209篇
  2003年   161篇
  2002年   139篇
  2001年   44篇
  2000年   50篇
  1999年   46篇
  1998年   25篇
  1997年   23篇
  1996年   20篇
  1995年   26篇
  1994年   21篇
  1993年   31篇
  1992年   26篇
  1991年   24篇
  1990年   22篇
  1989年   37篇
  1988年   21篇
  1987年   25篇
  1986年   18篇
  1985年   26篇
  1984年   12篇
  1983年   24篇
  1982年   13篇
  1981年   12篇
  1979年   20篇
  1978年   20篇
  1977年   14篇
  1975年   19篇
  1974年   16篇
  1973年   14篇
  1967年   11篇
排序方式: 共有5254条查询结果,搜索用时 15 毫秒
991.
In the rat brain, several steroids can be converted by specific enzymes to either more potent compounds or to derivatives showing new biological effects. One of the most studied enzyme is the 5-reductase (5-R), which acts on 3keto-Δ4 steroids. In males, testosterone is the main substrate and gives rise to the most potent natural androgen dihydrotestosterone. In females, progesterone is reduced to dihydroprogesterone, a precursor of allopregnanolone, a natural anxiolytic/anesthetic steroid. Other substrates are some gluco- and minero-corticoids. Two isoforms of the 5-R, with limited degree of homology, have been cloned: 5-R type 1 and type 2. The 5-R type 1 possesses low affinity for the various substrates and is widely distributed in the body, with the highest levels in the liver; in the brain, this isoform is expressed throughout life and does not appear to be controlled by androgens. 5-R type 1 in the rat brain is mainly concentrated in myelin membranes, where it might be involved in the catabolism of potentially neurotoxic steroids. The 5-R type 2 shows high affinity for the various substrates, a peculiar pH optimum at acidic values and is localized in androgen-dependent structures. In the rat brain, the type 2 isoform is expressed at high levels only in the perinatal period and is controlled by androgens, at least in males. In adulthood, the type 2 gene appears to be specifically expressed in localised brain regions, like the hypothalamus and the hippocampus.

The 5-R type 2 is present in the GT1 cells, a model of LHRH-secreting neurons. These cells also contain the androgen receptor, which is probably involved in the central negative feedback effect exerted by androgens on the hypothalamic–pituitary–gonadal axis. The physiological significance of these and additional data will be discussed.  相似文献   

992.
993.
The cullin‐4‐based RING‐type (CRL4) family of E3 ubiquitin ligases functions together with dedicated substrate receptors. Out of the ˜29 CRL4 substrate receptors reported, the DDB1‐ and CUL4‐associated factor 1 (DCAF1) is essential for cellular survival and growth, and its deregulation has been implicated in tumorigenesis. We carried out biochemical and structural studies to examine the structure and mechanism of the CRL4DCAF1 ligase. In the 8.4 Å cryo‐EM map of CRL4DCAF1, four CUL4‐RBX1‐DDB1‐DCAF1 protomers are organized into two dimeric sub‐assemblies. In this arrangement, the WD40 domain of DCAF1 mediates binding with the cullin C‐terminal domain (CTD) and the RBX1 subunit of a neighboring CRL4DCAF1 protomer. This renders RBX1, the catalytic subunit of the ligase, inaccessible to the E2 ubiquitin‐conjugating enzymes. Upon CRL4DCAF1 activation by neddylation, the interaction between the cullin CTD and the neighboring DCAF1 protomer is broken, and the complex assumes an active dimeric conformation. Accordingly, a tetramerization‐deficient CRL4DCAF1 mutant has higher ubiquitin ligase activity compared to the wild‐type. This study identifies a novel mechanism by which unneddylated and substrate‐free CUL4 ligases can be maintained in an inactive state.  相似文献   
994.
995.
Current information on pancreatic islet sulfonylurea receptors has been obtained with laboratory animal pancreatic β cells or stable β-cell lines. In the present study, we evaluated the properties of sulfonylurea receptors of human islets of Langherans, prepared by collagenase digestion and density-gradient purification. The binding characterisitics of labeled glibenclamide to pancreatic islet membrane preparations were analyzed, displacement studies with several oral hypoglycemic agents were performed, and these latter compounds were tested as for their insulinotropic action on intact human islets. [3H]glibenclamide saturable binding was shown to be linear at ≤0.25 mg/ml protein; it was both temperature and time dependent. Scatchard analysis of the equilibrium binding data at 25°C indicated the presence of a single class of saturable, high-affinity binding sites with a Kd value of 1.0 ± 0.07 nM and a Bmax value of 657 ± 48 fmol/mg of proteins. The displacement experiments showed the following rank order of potency of the oral hypoglycemic agents we tested: glibenclamide = glimepiride > tolbutamide > chlorpropamide ≫ metformin. This binding potency order was parallel with the insulinotropic potency of the evaluated compounds. J. Cell. Biochem. 71:182–188, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
996.
997.
998.
999.
Habitat richness, that is, the diversity of ecosystem types, is a complex, spatially explicit aspect of biodiversity, which is affected by bioclimatic, geographic, and anthropogenic variables. The distribution of habitat types is a key component for understanding broad‐scale biodiversity and for developing conservation strategies. We used data on the distribution of European Union (EU) habitats to answer the following questions: (i) how do bioclimatic, geographic, and anthropogenic variables affect habitat richness? (ii) Which of those factors is the most important? (iii) How do interactions among these variables influence habitat richness and which combinations produce the strongest interactions? The distribution maps of 222 terrestrial habitat types as defined by the Natura 2000 network were used to calculate habitat richness for the 10 km × 10 km EU grid map. We then investigated how environmental variables affect habitat richness, using generalized linear models, generalized additive models, and boosted regression trees. The main factors associated with habitat richness were geographic variables, with negative relationships observed for both latitude and longitude, and a positive relationship for terrain ruggedness. Bioclimatic variables played a secondary role, with habitat richness increasing slightly with annual mean temperature and overall annual precipitation. We also found an interaction between anthropogenic variables, with the combination of increased landscape fragmentation and increased population density strongly decreasing habitat richness. This is the first attempt to disentangle spatial patterns of habitat richness at the continental scale, as a key tool for protecting biodiversity. The number of European habitats is related to geography more than climate and human pressure, reflecting a major component of biogeographical patterns similar to the drivers observed at the species level. The interaction between anthropogenic variables highlights the need for coordinated, continental‐scale management plans for biodiversity conservation.  相似文献   
1000.
Synthetic glucocorticoids such as methylprednisolone are compounds of fundamental interest to the pharmaceutical industry as their modifications within the sterane scaffold lead to higher inflammatory potency and reduced side effects compared with their parent compound cortisol. In methylprednisolone production, the complex chemical hydroxylation of its precursor medrane in position C21 exhibits poor stereo- and regioselectivity making the process unprofitable and unsustainable. By contrast, the use of a recombinant E. coli system has recently shown high suitability and efficiency. In this study, we aim to overcome limitations in this biotechnological medrane conversion yielding the essential methylprednisolone-precursor premedrol by optimizing the CYP21A2-based whole-cell system on a laboratory scale. We successfully improved the whole-cell process in terms of premedrol production by (a) improving the electron supply to CYP21A2; here we use the N-terminally truncated version of the bovine NADPH-dependent cytochrome P450 reductase (bCPR−27) and coexpression of microsomal cytochrome b5; (b) enhancing substrate access to the heme by modification of the CYP21A2 substrate access channel; and (c) circumventing substrate inhibition which is presumed to be the main limiting factor of the presented system by developing an improved fed-batch protocol. By overcoming the presented limitations in whole-cell biotransformation, we were able to achieve a more than 100% improvement over the next best system under equal conditions resulting in 691 mg·L−1·d−1 premedrol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号