首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   945篇
  免费   46篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   6篇
  2019年   5篇
  2018年   10篇
  2017年   7篇
  2016年   11篇
  2015年   19篇
  2014年   30篇
  2013年   59篇
  2012年   38篇
  2011年   33篇
  2010年   29篇
  2009年   22篇
  2008年   40篇
  2007年   68篇
  2006年   58篇
  2005年   63篇
  2004年   69篇
  2003年   75篇
  2002年   58篇
  2001年   21篇
  2000年   15篇
  1999年   15篇
  1998年   13篇
  1997年   14篇
  1996年   9篇
  1995年   9篇
  1994年   11篇
  1993年   15篇
  1992年   15篇
  1991年   14篇
  1990年   28篇
  1989年   14篇
  1988年   11篇
  1987年   6篇
  1986年   6篇
  1985年   6篇
  1984年   8篇
  1983年   11篇
  1982年   10篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1978年   5篇
  1977年   5篇
  1974年   4篇
  1973年   5篇
  1972年   1篇
排序方式: 共有991条查询结果,搜索用时 93 毫秒
931.
In this study, we aimed to elucidate the effects and mechanism of action of valproic acid on hepatic differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells. Human induced pluripotent stem cells were differentiated into endodermal cells in the presence of activin A and then into hepatic progenitor cells using dimethyl sulfoxide. Hepatic progenitor cells were matured in the presence of hepatocyte growth factor, oncostatin M, and dexamethasone with valproic acid that was added during the maturation process. After 25 days of differentiation, cells expressed hepatic marker genes and drug-metabolizing enzymes and exhibited drug-metabolizing enzyme activities. These expression levels and activities were increased by treatment with valproic acid, the timing and duration of which were important parameters to promote differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells into hepatocytes. Valproic acid inhibited histone deacetylase activity during differentiation of human induced pluripotent stem cells, and other histone deacetylase inhibitors also enhanced differentiation into hepatocytes. In conclusion, histone deacetylase inhibitors such as valproic acid can be used to promote hepatic differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells.  相似文献   
932.
Solvolytic depolymerization of chondroitin and dermatan sulfates   总被引:1,自引:0,他引:1  
It is essential to establish a library of glycosaminoglycan oligosaccharides from the chondroitin and dermatan sulfates to investigate their biological functions and structure-activity relationships (SARs). There are several approaches to obtain oligosaccharides using chemical and enzymatic degradation procedures; however, purification of each resulting oligosaccharide is complicated because of the diversity of sulfonation patterns present in these oligosaccharides. We have developed a new method for the solvolytic degradation for chondroitin and dermatan sulfates to obtain an oligosaccharide mixture that can be easily purified into chondro/dermato oligosaccharides for characterization by both 1H NMR and MALDI-TOFMS. These oligosaccharides have a methyl-esterified uronate residue and a methyl 2-acetamido-2-deoxy-d-galactofuranoside at the nonreducing and reducing ends, respectively. All other internal repeating disaccharide units were desulfonated, but maintained their core carbohydrate structures.  相似文献   
933.
The solutions of liposome made of l-α-dilauroyl phosphatidylcholine are sonicated at various powers and frequencies (43-480 kHz), and the resultant change in the size of liposome is measured by the dynamic light scattering method. The ultrasonic power dissipated into the solution is determined by the calorimetric method in order to compare the effects of ultrasound of different frequencies. The faster reduction of the mean size of liposome is achieved at the lower frequency. Comparing at the same frequency and total energy, short-time irradiation of strong ultrasound is more efficient than long-time irradiation of weak ultrasound. These results indicate that the small number of cavitation events with stronger physical disturbance on liposome can reduce the size of the liposome more efficiently than the large number of cavitation events with weaker disturbance.  相似文献   
934.
Photoperiodically generated triiodothyronin (T3) in the mediobasal hypothalamus (MBH) has critical roles in the photoperiodic response of the gonads in Japanese quail. In a previous study, we demonstrated seasonal morphological changes in the neuro-glial interaction between gonadotrophin-releasing hormone (GnRH) nerve terminals and glial endfeet in the median eminence (ME). However, a direct relationship between photoperiodically generated T3 and seasonal neuro-glial plasticity in the ME remained unclear. In the present study, we examined the effect of T3 implantation into the MBH on the neuro-glial interaction in the ME. T3 implantation caused testicular growth and reduced encasement of nerve terminals in the external zone of the ME. In contrast, no morphological changes were observed in birds given an excessive dose of T3, which did not cause testicular growth. These results support the hypothesis that thyroid hormone regulates photoperiodic GnRH secretion via neuro-glial plasticity in the ME. T. Yoshimura was supported by the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN) and a Grant-in-Aid for Encouragement of Young Scientists from the Ministry of Education, Science, Sports, and Culture, Japan.  相似文献   
935.
Cucumber (Cucumis sativus L.) hypocotyls were transversely cut to half their diameter, and morphological analyses of the tissue-reunion process in the cortex were conducted to elucidate the involvement of root-derived factors. Cell division in the cortex commenced 3 days after cutting, and the cortex was nearly fully united within 7 days. In shoots from which the roots were removed and which were cultured in water, cell division occurred during tissue reunion; however, thick-wall layer formed in the reunion region, and intrusive cell elongation and interdigitation of cortex cells at the cut surface did not occur, even after 7 days. Interdigitation of cells, followed by normal tissue reunion, was observed in shoots from which the roots were removed and which were cultured in squash xylem sap or Murashige and Skoog (MS) medium. The same effect was observed with the simultaneous application of B, Mn, and Zn, which are the major inorganic microelements of MS medium. Our results suggest that application of these inorganic elements, which are taken up from the soil and transferred to the xylem sap, are required for interdigitation of cells during tissue reunion in the cortex of cucumber hypocotyls, possibly because they are required for cell wall function and metabolism.Asahina M and Gocho Y equally contributed to this work.  相似文献   
936.
This review describes the role of oxidative stress caused by endotoxin challenge in sepsis or septic shock symptoms. We observed that endotoxin injection resulted in lipid peroxide formation and membrane damage (near 60-150 kDa) in the livers of experimental animals, causing decreased levels of scavengers or quenchers of free radicals. The administration of alpha-tocopherol completely prevented injury to the liver plasma membrane caused by endotoxin, and suggested that lipid peroxidation by free radicals might occur in a tissue ischemic state, probably by disseminated intravascular coagulation (DIC), in endotoxemia. In mice, depression of Ca(2+)-ATPase activity in the liver plasma membrane may contribute to the membrane damage caused by endotoxin, and the increase of [Ca(2+)](i) in the liver cytoplasm may partially explain the oxidative stress that occurs in endotoxemia. It seems that endotoxin-induced free radical formation is regulated by Ca(2+) mobilization. Moreover, we have suggested that the oxidative stress caused by endotoxin may be due, at least in part, to the changes in endogenous zinc or selenium regulation during endotoxemia. Interestingly, the extent of TNF-alpha-induced oxidative stress may be the result of a synergism between TNF-alpha and gut-derived endotoxin. It is likely that bacterial or endotoxin translocation plays a significant role in TNF-alpha-induced septic shock. On the other hand, although nitric oxide (NO) has been implicated in the pathogenesis of vascular hyporesponsiveness and hypotension in septic shock in our experimental model, it is unlikely that NO plays a significant role in liver injury caused by free radical generation in endotoxemia.  相似文献   
937.
Two membrane proteases, FtsH and HtpX, are jointly essential for Escherichia coli cell viability, presumably through their abilities to degrade abnormal membrane proteins. To search for additional cellular factors involved in membrane protein quality control, we isolated multicopy suppressors that alleviated the growth defect of the ftsH/htpX dual disruption mutant. One of them was ybbK, which is renamed qmcA, encoding a membrane-bound prohibitin homology (PHB) domain family protein. Multicopy suppression was also observed with hflK-hflC, encoding another set of PHB domain membrane proteins, which had been known to form a complex (HflKC) and to interact with FtsH. Whereas the DeltaftsH sfhC21 (a viability defect suppressor for DeltaftsH) strain exhibited temperature sensitivity in the presence of cAMP, additional disruption of both qmcA and hflK-hflC exaggerated the growth defect. Pull-down and sedimentation experiments showed that QmcA, like HflKC, forms an oligomer and interacts with FtsH. Protease accessibility assays revealed that QmcA, unlike periplasmically exposed HflKC, possesses a cytoplasmically disposed large C-terminal domain, thus assuming the type I (NOUT-CIN) orientation. We discuss possible significance of having PHB domains on both sides of the membrane.  相似文献   
938.
Strong caudal obliquity of the lower ribs is one of the assumed characteristics of the thoracic region in hominoids and Ateles. Strong caudal obliquity keeps the scapula of the weight-bearing forelimb on the dorsal surface of the trunk via the serratus anterior muscles during propulsion (Stern et al. 1980). We examined the orientation of odd-numbered ribs in lateral view in remounted thoracic skeletons of fifteen nonhuman anthropoids. Hominoids exhibit pronounced caudal obliquity in the seventh and ninth ribs compared to Old and New World monkeys. The position of the maximum thoracic cage width, which approximates the attachment of the serratus anterior muscle, is more caudally located in Hylobates and Pongo. The overall pattern of rib obliquity is generally similar between New and Old World monkeys, including Ateles. Perhaps not only forelimb suspensory behavior but also various orthograde positional behaviors are related to the strong obliquity of the lower ribs; however, further investigation is necessary.  相似文献   
939.
The central pattern generators (CPGs) in the spinal cord strongly contribute to locomotor behavior. To achieve adaptive locomotion, locomotor rhythm generated by the CPGs is suggested to be functionally modulated by phase resetting based on sensory afferent or perturbations. Although phase resetting has been investigated during fictive locomotion in cats, its functional roles in actual locomotion have not been clarified. Recently, simulation studies have been conducted to examine the roles of phase resetting during human bipedal walking, assuming that locomotion is generated based on prescribed kinematics and feedback control. However, such kinematically based modeling cannot be used to fully elucidate the mechanisms of adaptation. In this article we proposed a more physiologically based mathematical model of the neural system for locomotion and investigated the functional roles of phase resetting. We constructed a locomotor CPG model based on a two-layered hierarchical network model of the rhythm generator (RG) and pattern formation (PF) networks. The RG model produces rhythm information using phase oscillators and regulates it by phase resetting based on foot-contact information. The PF model creates feedforward command signals based on rhythm information, which consists of the combination of five rectangular pulses based on previous analyses of muscle synergy. Simulation results showed that our model establishes adaptive walking against perturbing forces and variations in the environment, with phase resetting playing important roles in increasing the robustness of responses, suggesting that this mechanism of regulation may contribute to the generation of adaptive human bipedal locomotion.  相似文献   
940.
The La autoantigen (also known as SS-B), a cellular RNA binding protein, may shuttle between the nucleus and cytoplasm, but it is mainly located in the nucleus. La protein is redistributed to the cytoplasm after poliovirus infection. An in vitro translation study demonstrated that La protein stimulated the internal initiation of poliovirus translation. In the present study, a part of the La protein was shown to be cleaved in poliovirus-infected HeLa cells, and this cleavage appeared to be mediated by poliovirus-specific protease 3C (3Cpro). Truncated La protein (dl-La) was produced in vitro from recombinant La protein by cleavage with purified 3Cpro at only one Gln358-Gly359 peptide bond in the 408-amino-acid (aa) sequence of La protein. The dl-La expressed in L cells was detected in the cytoplasm. However, green fluorescence protein linked to the C-terminal 50-aa sequence of La protein was localized in the nucleus, suggesting that this C-terminal region contributes to the steady-state nuclear localization of the intact La protein in uninfected cells. The dl-La retained the enhancing activity of translation initiation driven by poliovirus RNA in rabbit reticulocyte lysates. These results suggest that La protein is cleaved by 3Cpro in the course of poliovirus infection and that the dl-La is redistributed to the cytoplasm. dl-La, as well as La protein, may play a role in stimulating the internal initiation of poliovirus translation in the cytoplasm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号