首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1288篇
  免费   53篇
  2023年   3篇
  2022年   8篇
  2021年   12篇
  2020年   13篇
  2019年   6篇
  2018年   6篇
  2017年   10篇
  2016年   22篇
  2015年   25篇
  2014年   35篇
  2013年   89篇
  2012年   61篇
  2011年   67篇
  2010年   46篇
  2009年   56篇
  2008年   73篇
  2007年   85篇
  2006年   100篇
  2005年   79篇
  2004年   79篇
  2003年   77篇
  2002年   94篇
  2001年   13篇
  2000年   10篇
  1999年   22篇
  1998年   17篇
  1997年   17篇
  1996年   17篇
  1995年   15篇
  1994年   12篇
  1993年   13篇
  1992年   15篇
  1991年   8篇
  1990年   14篇
  1989年   9篇
  1988年   11篇
  1987年   8篇
  1986年   11篇
  1985年   10篇
  1984年   7篇
  1983年   8篇
  1982年   5篇
  1981年   13篇
  1980年   5篇
  1978年   11篇
  1976年   6篇
  1975年   3篇
  1974年   7篇
  1973年   3篇
  1966年   2篇
排序方式: 共有1341条查询结果,搜索用时 15 毫秒
81.
The adult brain is extremely vulnerable to various insults. The recent discovery of neural progenitors in adult mammals, however, raises the possibility of repairing damaged tissue by recruiting their latent regenerative potential. Here we show that activation of endogenous progenitors leads to massive regeneration of hippocampal pyramidal neurons after ischemic brain injury. Endogenous progenitors proliferate in response to ischemia and subsequently migrate into the hippocampus to regenerate new neurons. Intraventricular infusion of growth factors markedly augments these responses, thereby increasing the number of newborn neurons. Our studies suggest that regenerated neurons are integrated into the existing brain circuitry and contribute to ameliorating neurological deficits. These results expand the possibility of novel neuronal cell regeneration therapies for stroke and other neurological diseases.  相似文献   
82.
Macrophage colony stimulating factor (M-CSF) is known to be the most effective growth factor for macrophage and microglial proliferation. In the brain tissue system, M-CSF is mainly produced in astrocytes and microglia, but is not known to occur in neurons. In the present paper, we examined the distribution of neurons expressing M-CSF in the mouse brain by immuno-histochemistry and in situ hybridization. We observed M-CSF immunoreactivity in both the cerebellum and the olfactory bulb. These positive cells were found to be Purkinje cells in the cerebellum, and mitral cells in the olfactory bulb. M-CSF mRNA expression was also confirmed to occur in these cells. Purkinje cells of reeler and weaver mutants showed M-CSF expression as seen in wild-type mice; however, those in the staggerer mutant did not. This expression in wild-type mice first appeared at postnatal day 7 and continued stably thereafter. When Purkinje cells were deprived of their climbing fibre innervation by inferior cerebellar pedunculotomy or by transplantation of cerebellar anlagen into the anterior eye chamber, the expression of M-CSF remained unchanged. These data indicate that expression of M-CSF in Purkinje cells is controlled by an intrinsic mechanism and could, therefore, be a new marker of postnatal development in rodent cerebella. The absence of M-CSF expression in the staggerer mutant is possibly due to developmental arrest in the early postnatal period.  相似文献   
83.
The variegated cutworm, Peridroma saucia Hübner, is a lepidopteran pest to a large number of crops in Canada, the United States, and Europe. It was probably naturalized in Japan in the 1970s. The pheromone glands of the female moth include two components with electroantennographic activity in a ratio of 3:1. GC-MS analyses of pheromone extracts untreated and treated with dimethyl disulfide revealed the major component to be (Z)-11-hexadecenyl acetate and the minor component to be (Z)-9-tetradecenyl acetate. The synthetic pheromone was used to attract a large number of males in a vegetable field in Tokyo, which suggests that this species has already become a harmful pest in Japan.  相似文献   
84.
The laminar arrays of distinct cell types in the vertebrate retina are built by a histogenic process in which cell fate is correlated with birth order. To explore this co-ordination mechanistically, we altered the relative timing of cell cycle exit in the developing Xenopus retina and asked whether this affected the activity of neural determinants. We found that Xath5, a bHLH proneural gene that promotes retinal ganglion cell (RGC) fate, ( Kanekar, S., Perron, M., Dorsky, R., Harris, W. A., Jan, L. Y., Jan, Y. N. and Vetter, M. L. (1997) Neuron 19, 981-994), does not cause these cells to be born prematurely. To drive cells out of the cell cycle early, therefore, we misexpressed the cyclin kinase inhibitor, p27Xic1. We found that early cell cycle exit potentiates the ability of Xath5 to promote RGC fate. Conversely, the cell cycle activator, cyclin E1, which inhibits cell cycle exit, biases Xath5-expressing cells toward later neuronal fates. We found that Notch activation in this system caused cells to exit the cell cycle prematurely, and when it is misexpressed with Xath5, it also potentiates the induction of RGCs. The potentiation is counteracted by co-expression of cyclin E1. These results suggest a model of histogenesis in which the activity of factors that promote early cell cycle exit enhances the activity of factors that promote early cellular fates.  相似文献   
85.
BACKGROUND: Aspiration biopsy cytology of thyroid tumors has been used more frequently in recent times to differentiate between malignant and benign lesions. Chromatin patterns of the tumor cell nuclei are one of most important factors for cytologic diagnosis. The interpretation of nuclear chromatin patterns is subjective and more difficult than that of nuclear size or shape. In the present report, we investigated how to detect underlying chromatin characteristics of benign and malignant thyroid tumor cells by means of texture and factor analyses. METHODS: We employed a computer-aided system in which light microscopy was combined with an image processor and monochrome camera. Using this system, 100 randomly selected cells in a Papanicolaou stained, aspiration biopsy cytologic smear in each case of 39 benign and malignant thyroid tumor cases were digitized. We applied two-dimensional and higher texture analyses with the use of co-occurrence and run-length matrices to analyze the chromatin patterns. Factor analysis was used to determine whether a large number of independent variables actually measured one or more underlying common variables. RESULTS: According to parameters with high factor-loading values, the morphologic chromatin characters were classified into three categories according to heterogeneity, contrast, and homogeneity of chromatin patterns. On the basis of analyses with these morphologic categories, nuclei of papillary carcinoma showed higher contrast of chromatin patterns than did those of the benign group. Moreover, there was a variety of contrasting chromatin patterns among cells in each papillary carcinoma case in comparison with the benign group. In contrast, follicular carcinomas showed a significant difference in the standard deviation of factor 3, which indicated more monotonous chromatin patterns among cells in each follicular carcinoma case than in each benign case. CONCLUSION: We believe that this technique, using texture and factor analyses, is useful in the detection of underlying characteristics of nuclear chromatin patterns in aspiration biopsy cytology.  相似文献   
86.
Fulminant hepatic failure (FHF) is a disease characterized by sudden and severe impairment of liver function. To elucidate the mechanism involved in FHF, we adopted a murine model of FHF by administrating mice with heat-killed Propionibacterium acnes (P. acnes), followed by a low dose of lipopolysaccharide (LPS), and analyzed the dynamic change of gene expression profile of the murine liver using an in-house cDNA microarray system which contained most of the cDNAs encoding chemokines/cytokines and their receptors (33 chemokines/21 chemokine receptors, 28 cytokines/35 cytokine receptors) as well as 230 liver related proteins mostly selected by serial analysis of gene expression (SAGE). Among them, 335 genes were found to differ by more than 2-fold in at least one time point comparing with normal liver. Hierarchical cluster analysis revealed that except for a few genes, such as heme oxygenase (HO)-1 and nicotinamide N-methyltransferase (NNMT) of which expression increased, the expression of most of the genes encoding drug metabolizing enzymes decreased with the progress of the disease. The expression of the genes encoding chemokines/cytokines was dramatically changed, such as Mig, IP-10, RANTES, TNF-alpha, and IFN-gamma. In addition, the expression of those that were not previously linked to this murine model was also identified to be changed. These include endogenous IL-18 binding protein (IL-18BP), CXCL16 (the ligand of Bonzo, CXCR6) as well as ESTs. Taken together this study has shown the systemic and comprehensive gene expression profile during FHF and may contribute to better understanding of the mechanism of FHF.  相似文献   
87.
Thymidine phosphorylase (TP) has chemotactic and angiogenic activities resulting from its enzymatic activity in vitro, and it also promotes tumor growth and inhibits apoptosis in vivo. Recently, we have reported that TP plays an important role in Fas-induced apoptosis. Caspase-8 cleavage, subsequent cytochrome c release, and caspase-3 cleavage were prevented in KB cells transfected with a TP cDNA (KB/TP cells). In this study, treatment with thymidine phosphorylase inhibitor (TPI) or thymidine did not affect cell survival of KB/TP cells during Fas-induced apoptosis. Moreover, treatment with thymine or 2-deoxy-D-ribose (degradation products of thymidine generated by TP) also did not affect cell survival of control transfectant (KB/CV) cells during Fas-induced apoptosis. These findings indicate that TP suppresses Fas-induced apoptotic signal transduction independent of its enzymatic activity.  相似文献   
88.
Ikushiro S  Emi Y  Iyanagi T 《Biochemistry》2002,41(42):12813-12820
UDP-glucuronosyltransferase- (UGT-) dependent glucuronidation is an important detoxification process for many endogenous and exogenous compounds in mammals. Treatment of rat hepatic microsomes with the reducing reagent dithiothreitol (DTT) resulted in a significant increase in p-nitrophenol (p-NP) glucuronidation in a time- and concentration-dependent manner. The DTT-dependent activation of glucuronidation was specific for planar phenols but not for bilirubin or testosterone without membrane perturbation of the microsomes. p-NP glucuronidation in Gunn rat hepatic microsomes lacking UGT1 isozymes was not affected by DTT, indicating that UGT1A6 in the microsomes is mainly involved in the activation. The DTT-dependent activation was inhibited by 1,6-bis(maleimido)hexane (BMH) but not by N-ethylmaleimide, indicating that cross-linking between cysteine residues in UGT1A6 is responsible for the activation. Immunoblot analysis of rat hepatic microsomes on nonreducing SDS-PAGE gels revealed that most of the UGT1A6 migrated as a monomer, suggesting that DTT could affect an intramolecular disulfide bond in the UGT1A6 that may be responsible for the activation. To identify which of the ten cysteines in UGT1A6 are involved in the disulfide bond, rat UGT1A6 wild type and a set of mutants, each with a cysteine to serine substitution, were constructed and expressed in COS cells. Treatment of COS microsomes with DTT had no effect on the activity of the wild type but BMH showed significant inhibition, suggesting that UGT1A6 expressed in COS cells may be in the reduced and activated state. Replacement of either Cys 121 or Cys 125 with serine showed insensitivity to the BMH-dependent inhibition. These results demonstrate that both Cys 121 and Cys 125 are responsible for the activation of the activity through the disulfide bond in rat UGT1A6.  相似文献   
89.
Morii T  Sato S  Hagihara M  Mori Y  Imoto K  Makino K 《Biochemistry》2002,41(7):2177-2183
We have employed a structure-based design to construct a small folding domain from the F-actin bundling protein villin that contains the amino acids necessary for the DNA binding of the basic leucine zipper protein GCN4 and have compared its DNA binding with GCN4. The monomeric motif folds into a stable domain and binds DNA in a rigid-body mechanism, while its affinity is not higher than that of the basic region peptide. The addition of the leucine zipper region to the folded domain restored its sequence-specific DNA binding comparable to that of GCN4. Unlike the monomeric folded domain, its leucine zipper derivative undergoes a conformational change upon DNA binding. CD spectral and thermodynamic studies indicate that the DNA-contacting region is folded in the presence or absence of DNA and suggest that the junction between the DNA-contacting and the leucine zipper regions transits to a helix in the presence of DNA. These results demonstrate that the structural transition outside the direct-contacting region, which adjusts the precise location of the DNA-contacting region, plays a critical role in the specific complex formation of basic leucine zipper proteins.  相似文献   
90.
Dendritic cells (DCs) are potent antigen-presenting cells (APCs). Among so-called professional APCs, only DCs can activate naive T cells to initiate immune response. To better understand molecular mechanisms underlying unique functions of DCs, we searched for genes specifically expressed in human DCs, using PCR-based cDNA subtraction in conjunction with differential screening. cDNAs generated from CD34(+) stem cell-derived CD1a(+) DC were subtracted with cDNA from monocytes and used for generation of a cDNA library. The cDNA library was differentially screened to select genes expressed in DCs more abundantly than in monocytes. We identified a gene encoding a protein composed of 244 amino acids, which we designated as DCNP1 (dendritic cell nuclear protein 1). In Northern blot analysis, DCNP1 mRNA was highly expressed in mature DCs and at a lower level in immature DCs. In contrast, monocytes and B cells do not express the gene. In multiple human tissue Northern blot analysis, expression of DCNP1 was detected in brain and skeletal muscle. To examine subcellular localization of DCNP1, we performed immunofluorescence analysis using an anti-DCNP1 polyclonal antibody and found the molecule to be localized mainly in the perinucleus. In an immunohistochemical analysis, we compared the expression of DCNP1 with CD68, a marker for DCs and macrophages, in spleen, lymph node, liver, and brain. While DCNP1-positive cells showed a similar tissue distribution to CD68-positive cells, the number of DCNP1-positive cells was much smaller than that of CD68-positive cells. Our findings are consistent with the proposal that DCNP1 is specifically expressed in DCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号