首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   31篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   10篇
  2013年   8篇
  2012年   11篇
  2011年   10篇
  2010年   5篇
  2009年   7篇
  2008年   10篇
  2007年   8篇
  2006年   6篇
  2005年   10篇
  2004年   6篇
  2003年   10篇
  2002年   5篇
  2001年   8篇
  2000年   6篇
  1999年   9篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   7篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1966年   1篇
  1965年   2篇
  1961年   2篇
  1948年   1篇
  1947年   1篇
排序方式: 共有208条查询结果,搜索用时 31 毫秒
131.
Using plants to extract excess nitrate from soil is important in protecting against eutrophication of standing water, hypoxic conditions in lakes and oceans, or elevated nitrate concentrations in domestic water supplies Global climate change issues have raised new concerns about nitrogen (N) management as it relates to crop production even though there may not be an immediate threat to water quality. Carbon dioxide (CO2) emissions are frequently considered the primary cause of global climate change, but under anaerobic conditions, animals can contribute by expelling methane (CH4) as do soil microbes. In terms of the potential for global climate change, CH4 is approximately 25 times more harmful than CO2. This differential effect is minuscule compared to when nitrous oxide (N2O) is released into the atmosphere because it is approximately 300 times more harmful than CO2. N2O losses from soil have been positively correlated with residual N (nitrate, NO3-) concentrations in soil. It stands to reason that phytoremediation via nitrate scavenger crops is one approach to help protect air quality, as well as soil and water quality. Winter wheat was inserted into a seed corn/soybean rotation to utilize soil nitrate and thereby reduce the potential for nitrate leaching and N2O emissions. The net effect of the 2001-2003 relay cropping sequence was to produce three crops in two years, scavenge 130 kg N/ha from the root zone, produce an extra 2 Mg residue/ha, and increase producer profitability by approximately 250 dollars/ha.  相似文献   
132.
We propose that a necessary condition for a protein to be soluble is the absence of large hydrophobic patches on its solvent-accessible surface, which can cause aggregation to occur. We note that the polar nature of the backbone of all amino acids guarantees a minimum polar content and hence can interrupt such patches. As a result, a carefully conserved detailed atomic placement of residues on the protein surface is not necessary for solubility. In order to demonstrate this, we construct a measure based on the average hydrophobicity of a simply defined patch. We use this measurement to compare surfaces that exhibit a clear difference in their solubility properties, namely, a) the solvent accessible surfaces for a set of homo-dimers and the surfaces buried in their interfaces and b) for a set of monomers the surfaces of fragments of secondary structure which are solvent accessible/inaccessible. Having demonstrated a difference in the first set of distributions, we characterize the solvent accessible surfaces of monomeric proteins. To test if cooperative behavior occurs between the atoms for these surfaces, we construct a set of randomized surfaces, which obey a very simple stereochemical constraint. We find that the observed and randomized distributions are much more similar than the previous sets we examined. This implies that while surfaces of soluble proteins must have sufficient polar content, the relative placement of atoms of one amino acid with respect to the atoms of neighboring amino acid need not be finely tuned, which provides an innate robustness for protein design and folding.  相似文献   
133.
Complement plays a critical role in the immune response by opsonizing immune complexes (IC) and thymus-independent type 2 Ags with C3 breakdown product C3dg, a CR2-specific ligand. We used a C3dg-opsonized IC model, anti-CR1/2 mAb 7G6, to investigate how such substrates are processed. We used RIA, whole body imaging, flow cytometry, and fluorescence immunohistochemistry to examine the disposition of 0.1- to 2-microg quantities of mAb 7G6 infused i.v. into BALB/c mice. The mAb is rapidly taken up by the spleen and binds preferentially to marginal zone (MZ) B cells; within 24 h, the MZ B cells relocate and transfer mAb 7G6 to follicular dendritic cells (FDC). Transfer occurs coincident with loss of the extracellular portion of MZ B cell CR2, suggesting that the process may be mediated by proteolysis of CR2. Intravenous infusion of an FDC-specific mAb does not induce comparable splenic localization or cellular reorganization, emphasizing the importance of MZ B cells in intrasplenic trafficking of bound substrates. We propose the following mechanism: binding of C3dg-opsonized IC to noncognate MZ B cells promotes migration of these cells to the white pulp, followed by CR2 proteolysis, which allows transfer of the opsonized IC to FDC, thus facilitating presentation of intact Ags to cognate B cells.  相似文献   
134.
We have previously shown that the receptor for substance P (SP), neurokinin-1 receptor (NK-1R), is a marker of human mucosal but not peripheral mononuclear cells. In the present study, we investigate NK-1R expression in the human colonic mucosa in vivo, particularly in the epithelial cells. We investigate the influence of proinflammatory Th1 cytokines and SP on expression and function of NK-1R in colonic epithelial cells in vitro. Using in situ hybridization to detect NK-1R mRNA, and immunohistochemistry to detect NK-1R protein, colonic epithelial cells were found to express NK-1R in vivo. In contrast, colon epithelial cell lines (Caco-2, HT29, SW620, T84) were negative for NK-1R mRNA and protein. However, stimulation with a proinflammatory cytokine cocktail containing IFN-gamma, TNF-alpha, and IL-1beta, caused induction of NK-1R expression. Expression of NK-1R in human colonic epithelial cells in vivo may therefore reflect cytokine conditioning by the mucosal microenvironment. SP did not alter ion transport in monolayers of cytokine-treated T84 cells. While SP stimulated epithelial ion transport in colonic mucosae ex vivo, this was not a direct effect of SP on the epithelial cells, and appeared to be neurally mediated. However, SP (10(-10)-10(-8) M) elicited a dose-dependent proliferative effect on cytokine-stimulated, but not unstimulated, SW620 cells. Proliferation of the epithelial cells in response to SP was mediated specifically via cytokine-induced NK-1R, since an NK-1R-specific antagonist (Spantide 1) completely blocked SP-mediated proliferation in the cytokine-treated cells. Our results therefore demonstrate that proinflammatory cytokines induce expression of NK-1R in human colonic epithelial cell lines, and that SP induces proliferation of the epithelial cells via cytokine-induced NK-1R.  相似文献   
135.
An iodinated photoaffinity label for the glucose transporter, 3-iodo-4-azidophenethylamido-7-O-succinyldeacetyl-forskolin (IAPS-forskolin), has been synthesized, purified, and characterized. The I50 for inhibition of 3-O-methylglucose transport in red blood cells by IAPS-forskolin was found to be 0.05 microM. The carrier free radioiodinated label is a highly specific photoaffinity label for the human erythrocyte glucose transporter. Photolysis of erythrocyte membranes (ghosts) and purified glucose transporter preparations with 1-2 nM [125I]IAPS-forskolin and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed specific derivatization of a broad band with an apparent molecular mass of 40-70 kDa. Photoincorporation into erythrocyte membranes using 2 nM [125I]IAPS-forskolin was protected with D-glucose (I50 400 mM), cytochalasin B (I50 0.5 microM), and forskolin (I50 10 microM). No protection was observed with L-glucose (600 mM). Endo-beta-galactosidase digestion of [125I] IAPS-forskolin-labeled ghosts and purified transporter resulted in a dramatic sharpening of the specifically radiolabeled transporter to 40 kDa. Trypsinization of [125I]IAPS-forskolin-labeled ghosts and purified transporter reduced the specifically radiolabeled transporter to a sharp peak at 18 kDa. [125I]IAPS-forskolin will be a useful tool to study the structural aspects of the glucose transporter.  相似文献   
136.
The regulation of the glucose transport system by catecholamines and insulin has been studied in isolated rat cardiomyocytes. In the basal state, 1-isoproterenol exhibited a biphasic concentration-dependent regulation of 3-O-methylglucose transport. At low concentrations (less than 10 nM), isoproterenol induced a maximal inhibition of 65-70% of the basal rates, while at higher concentrations (greater than 10 nM) a 25-70% stimulation of transport was observed. In the presence of adenosine deaminase, the inhibition of isoproterenol at low doses was attenuated. No effect of adenosine deaminase was observed on the stimulation of transport at high doses of isoproterenol. The inhibitory effect of isoproterenol returned when N6-phenylisopropyladenosine (a non-metabolizable analog of adenosine) was included along with adenosine deaminase. Dibutyryl cAMP and forskolin both inhibited basal transport rates. In the presence of maximally stimulating concentrations of insulin, cardiomyocyte 3-O-methylglucose transport was generally elevated 200-300% above basal levels. In the presence of isoproterenol, insulin stimulation was inhibited at both high and low concentrations of catecholamine, with maximum inhibition occurring at the lowest concentrations tested. When cells were incubated with both adenosine deaminase and isoproterenol, the inhibition of the insulin response was greater at all concentrations of catecholamine and was almost completely blocked at isoproterenol concentrations of 10 nM or less. Dibutyryl cAMP inhibited the insulin response to within 10% of basal transport levels, while forskolin completely inhibited all transport activity in the presence of insulin. These results suggest that catecholamines regulate basal and insulin-stimulated glucose transport via both cAMP-dependent and cAMP-independent mechanisms and that this regulation is modulated in the presence of extracellular adenosine.  相似文献   
137.
The monoclonal antibody 13.3 specifically blocks the trigger process of the NK-K562 cytolytic sequence at a post-binding effector cell level. This antibody was used to define differences in the lytic trigger processes of NK and other mechanisms of K562 lysis. Monoclonal antibody 13.3 inhibited lysis of K562 target cells by freshly isolated peripheral blood lymphocytes (PBL) and purified large granular lymphocytes (LGL), but had no inhibitory effect on antibody-dependent cell-mediated cytotoxicity to K562 by these effectors. Lectin-dependent cellular cytotoxicity (LDCC) to this target cell was also unresponsive to 13.3. The 13.3-induced inhibition of NK-K562 lytic activity persisted when PBL were activated in culture with interleukin 2 (IL 2) for periods up to 48 hr. After 48 hr of culture, the degree of inhibition diminished progressively in medium containing fetal calf serum but not in medium containing autologous serum. This 13.3-unresponsive lytic activity in cultured PBL could be attributed to more than one cell type and was present in both the LGL and Fc gamma receptor-depleted T cell fraction. Thus, K562 lysis by freshly isolated human lymphocytes via NK, K, and LDCC mechanisms is characterized by heterogeneity of the post-binding effector cell trigger mechanism. K562 lysis by lymphocytes cultured with IL 2 is similarly heterogeneous.  相似文献   
138.
NK-depleted human peripheral blood lymphocytes can be modulated with anti-CD3 to kill certain targets during 3-hr cytotoxicity assays. When triggered by anti-CD3 antibody, these effector T cells killed only NK-sensitive targets, such as K562 and HEL 92.1.7, and NK-resistant targets, such as Daudi, whose killing is inhibited by anti-CD45 (T-200) monoclonal antibodies, such as 13.3. NK-sensitive targets, MOLT-4, U266/AF10, Jurkat, and CCFR-CEM, and 10 NK-resistant cell lines, including Raji, IM-9, U698, U937, and GM-1056, whose killing is not inhibited by anti-CD45 monoclonal antibodies, were not killed by alpha-CD3-T effectors, suggesting that the CD45 molecule may be involved in the killing process. Anti-CD3-triggered T cell killing of target cells was inhibited greater than 95% by the monoclonal antibody 13.3. This inhibition of cytotoxicity by 13.3 was not due to competition of this IgG1 antibody for Fc receptor binding site on the target cell, since the IgG1 monoclonal antibody anti-beta 2-microglobulin did not block cytotoxicity. Single cell assays and calcium pulse assays showed that CD45 is involved in a postbinding, pre-calcium-dependent stage, similar to that shown for NK cytotoxicity. There was a relative shift of importance of different epitopes of CD45 in anti-CD3-T cytotoxicity compared to NK cytotoxicity. Anti-CD45 antibodies which bind to the C terminus end of the molecule played a more important role in anti-CD3-T cytotoxicity than NK cytotoxicity. Thus, a subset of T cells exists that exhibits anti-CD3-triggered non-MHC-restricted killing of certain NK-sensitive and NK-resistant targets in association with a CD45 molecule which is functionally different from the NK CD45 molecule.  相似文献   
139.
Mast cell heterogeneity   总被引:1,自引:0,他引:1  
Increasing evidence for the existence of inter- and intra-species mast cell heterogeneity has expanded the potential biological role of this cell. Early studies suggesting that mast cells at mucosal sites differ morphologically and histochemically from connective tissue mast cells have been confirmed using isolated intestinal mucosal mast cells in the rat and more recently in man. These studies also established that mucosal mast cells are functionally distinct from connective tissue mast cells. Thus, mucosal and connective tissue mast cells differ in their responsiveness to a variety of mast cell secretagogues and antiallergic agents. Speculation about the therapeutic use of antiallergic drugs in disorders involving intestinal mast cells cannot, therefore, be based on extrapolation from studies of their effects on mast cells from other sites. Regulatory mechanisms for mast cell secretion may also be heterogeneous since mucosal mast cells differ from connective tissue mast cells in their response to a variety of physiologically occurring regulatory peptides. The development of techniques to purify isolated mast cell subpopulations will facilitate future analysis of the biochemical basis of the functional heterogeneity of mast cells.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号