首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   8篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   8篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   11篇
  2014年   8篇
  2013年   16篇
  2012年   22篇
  2011年   22篇
  2010年   4篇
  2009年   5篇
  2008年   12篇
  2007年   7篇
  2006年   6篇
  2005年   3篇
  2004年   7篇
  2003年   6篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1991年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1973年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
61.
Antibacterial autophagy is understood to be a key cellular immune response to invading microbes. However, the mechanism(s) by which bacteria are selected as targets of autophagy remain unclear. We recently identified diacylglycerol as a novel signaling molecule that targets bacteria to the autophagy pathway, and show that it acts via protein kinase C activation. We also found that Pkc1 is required for autophagy in yeast, indicating that this kinase plays a conserved role in autophagy regulation.Key words: bacteria, Salmonella, innate immunity, adaptor, lipid second messenger, diacylglycerol, ubiquitin, NDP52, p62, SQSTM1The mechanism by which bacteria and other subcellular targets are identified and degraded by the autophagy pathway is an area of intense research. Ubiquitin has been recently found to act as an essential signal required for the autophagy of bacteria and proteins. We have previously observed ubiquitin on autophagy-targeted Salmonella enterica serovar Typhimurium (S. Typhimurium) but were surprised to see that only 50% of these bacteria were positive for ubiquitin. This indicated the possibility that an alternate signal was required for efficient autophagic targeting of the nonubiquitinated population of these bacteria.We initially performed a screen quantifying the colocalization of different lipid second messengers (diacylglycerol (DAG), PtdIns(3)P, PtdIns(4,5)P2, PtdIns(3,4) P2, and PtdIns(3,4,5)P3) with autophagytargeted (i.e., LC3+) S. Typhimurium. We observed that DAG preferentially localizes with LC3+ bacteria. A kinetic analysis revealed that maximal DAG colocalization with bacteria (45 min post-infection) precedes maximal autophagy of the bacteria (60 min post-infection). Using pharmacological agents, siRNA and dominant negative constructs we were able to determine that DAG localization to the bacteria requires the action of phospholipase D (PLD; phosphatidylcholine to phosphatidic acid conversion) and phosphatidic acid phosphatase (PAP; phosphatidic acid to DAG conversion). We observed that inhibition of these pathways significantly reduces DAG localization to bacteria as well as concomitant autophagy of the bacteria, indicating a role for this lipid second messenger in the regulation of this process.Having determined that DAG is necessary for autophagy of bacteria we subsequently wanted to identify the effector through which it was signaling. Conventional and novel isoforms of the protein kinase C (PKC) family contain DAG-binding C1 domains. Accordingly, we targeted PKC isoforms using pharmacological agents, siRNA and knockout cell lines and were able to determine that DAG is signaling through the δ isoform of PKC. Inhibition of this serine/threonine kinase results in significant inhibition of antibacterial autophagy. Furthermore, bacterial replication in PKCδ knockout mouse embryonic fibroblasts is significantly higher compared to control fibroblasts, consistent with previous observations demonstrating that autophagy impairs intracellular replication of S. Typhimurium (Birmingham et al. 2006).We addressed the possibility that DAG and ubiquitin are functioning in a cooperative manner to target Salmonella for degradation by autophagy. We simultaneously inhibited both pathways using siRNA or pharmacological agents and observed additive inhibitory effects on autophagy of the bacteria. While this is indicative of two independent pathways, we cannot discount the possibility that there is still cooperation between the two pathways, especially as we did observe a small population of bacteria that were positive for both DAG and ubiquitin (Fig. 1). There are also a number of technical limitations in the methods we used, such as detection levels of the probes and antibodies that warrant caution in concluding that the two pathways are completely independent. Nonetheless, our studies clearly demonstrate a role for both DAG (Shahnazari et al. 2010) and ubiquitin (Zheng et al. 2009) in autophagy of S. Typhimurium. Future studies are required to further examine how these signals contribute to regulation of antibacterial autophagy.Open in a separate windowFigure 1Autophagic targeting of Salmonella Typhimurium. Invading S. Typhimurium can be targeted to the autophagy pathway by two independent signaling mechanisms. The first requires ubiquitin and the autophagy adaptors p62 and NDP52. The second requires DAG generation and PKCδ function. DAG generation on the SCV may occur through interaction of the SCV with DAG-positive endocytic vesicles (pathway 1) or through direct DAG production on the SCV (pathway 2). SCV, Salmonella-containing vacuole; PA, phosphatidic acid; DAG, diacylglycerol; PAP, phosphatidic acid phosphatase; PKCδ, protein kinase C delta; Ub, ubiquitin.Having characterized this pathway in antibacterial autophagy we were interested in determining whether these components were required for general autophagy. We therefore tested whether DAG localizes with rapamycin-induced autophagosomes. We observed DAG on these compartments and also found a requirement for PAP and PKCδ in this process. Other PKC isoforms are involved in alternate types of autophagy including ER stress-induced autophagy (Sakaki et al. 2008) as well as hypoxia-induced autophagy (Chen et al. 2009). As a result, we were interested in determining whether PKC function in autophagy was evolutionarily conserved. We therefore tested a role for the yeast ortholog, Pkc1, in this process and observed that it is required for starvation-induced autophagy in Saccharomyces cerevisiae.Having identified and characterized a novel signal and effector for antibacterial autophagy, further work still remains to be done in order to obtain a complete picture of this process. This includes additional study of the mechanism by which DAG is generated and the subcellular localization of PLD and PAP during this process. It is possible that DAG+ endocytic vesicles fuse with the Salmonella-containing vacuole (SCV) coating this compartment with DAG (pathway 1, see Fig. 1). It is also possible that both PLD and PAP function directly on the SCV, converting phosphatidylcholine to DAG via the phosphatidic acid intermediate (pathway 2, Fig. 1).More work also needs to be done to dissect DAG and ubiquitin signaling contributions to this pathway. Questions to be answered include the identification of the ubiquitinated protein(s) on the SCV, which may be host or bacterial proteins. Additionally, while we know that DAG is present on the SCV we do not yet know the signal that induces its generation. One intriguing possibility is that DAG generation occurs in response to bacterial-induced damage to the SCV during invasion. To date, PKC has been implicated in at least three different types of autophagy, and the possibility exists that other PKC isoforms (DAG responsive or not) are also involved in this process.  相似文献   
62.
63.
Genesis of natural biocomposite-based materials, such as bone, cartilage, and teeth, involves interactions between organic and inorganic systems. Natural biopolymers, such as peptide motif sequences, can be used as a template to direct the nucleation and crystallization of hydroxyapatite (HA). In this study, a natural motif sequence consisting of 13 amino acids present in the first helix of osteocalcin was selected based on its calcium binding ability and used as substrate for nucleation of HA crystals. The acidic (acidic osteocalcin-derived peptide (OSC)) and amidic (amidic osteocalcin-derived peptide (OSN)) forms of this sequence were synthesized to investigate the effects of different C termini on the process of biomineralization. Electron microscopy analyses show the formation of plate-like HA crystals with random size and shape in the presence of OSN. In contrast, spherical amorphous calcium phosphate is formed in the presence of OSC. Circular dichroism experiments indicate conformational changes of amidic peptide to an open and regular structure as a consequence of interaction with calcium and phosphate. There is no conformational change detectable in OSC. It is concluded that HA crystal formation, which only occurred in OSN, is attributable to C-terminal amidation of a natural peptide derived from osteocalcin. It is also proposed that natural peptides with the ability to promote biomineralization have the potential to be utilized in hard tissue regeneration.  相似文献   
64.
Microbial enhanced oil recovery (MEOR) refers to the process of using bacterial activities for more oil recovery from oil reservoirs mainly by interfacial tension reduction and wettability alteration mechanisms. Investigating the impact of these two mechanisms on enhanced oil recovery during MEOR process is the main objective of this work. Different analytical methods such as oil spreading and surface activity measurements were utilized to screen the biosurfactant-producing bacteria isolated from the brine of a specific oil reservoir located in the southwest of Iran. The isolates identified by 16S rDNA and biochemical analysis as Enterobacter cloacae (Persian Type Culture Collection (PTCC) 1798) and Enterobacter hormaechei (PTCC 1799) produce 1.53 g/l of biosurfactant. The produced biosurfactant caused substantial surface tension reduction of the growth medium and interfacial tension reduction between oil and brine to 31 and 3.2 mN/m from the original value of 72 and 29 mN/m, respectively. A novel set of core flooding tests, including in situ and ex situ scenarios, was designed to explore the potential of the isolated consortium as an agent for MEOR process. Besides, the individual effects of wettability alteration and IFT reduction on oil recovery efficiency by this process were investigated. The results show that the wettability alteration of the reservoir rock toward neutrally wet condition in the course of the adsorption of bacteria cells and biofilm formation are the dominant mechanisms on the improvement of oil recovery efficiency.  相似文献   
65.
Natural killer cells, which play a pivotal role in the establishment and maintenance of normal pregnancy, are the most abundant leukocytes at the fetomaternal interface that their subsets frequencies and cytokine profile are influential factors in the preservation of the decidual tolerogenic microenvironment. Any imbalance in NK cells' frequency and functions could be associated with pregnancy failure. Mesenchymal stem cells (MSCs) are shown to have immunomodulatory effects on NK cells and their cytokine profile. The purpose of this study is to evaluate the impact of MSCs therapy on the cytokine profiles and subpopulations of NK cells in a murine model of recurrent pregnancy loss. Adipose-derived MSCs were injected intraperitoneally to the abortion-prone mice on Day 4.5 of gestation. The abortion rate was determined after MSCs administration and the frequency and cytokine profiles of the different subsets of NK cells were determined using the flow cytometry. Our results showed that, in abortion-prone mice, the frequency of CD49b+ NK cells was significantly higher than normal pregnant mice that decreased after therapy. We also demonstrated that MSCs downregulated the production of IFN-γ and upregulated IL-4 and IL-10 production by uNK cells. These findings indicate that MSCs can decrease the infiltration of CD49b+ NK cells to the fetomaternal interface and modulate the cytokine profile of NK cells from inflammatory to tolerogenic profile and thereby improve the tolerogenic microenvironment at the fetomaternal interface in benefit of pregnancy maintenance.  相似文献   
66.

Background

The interaction of environmental chemicals and their metabolites with biological macromolecules can result in cytotoxic and genotoxic effects. 4-Aminobiphenyl (4-ABP) and several other related arylamines have been shown to be causally involved in the induction of human urinary bladder cancers. The genotoxic and the carcinogenic effects of 4-ABP are exhibited only when it is metabolically converted to a reactive electrophile, the aryl nitrenium ions, which subsequently binds to DNA and induce lesions. Although several studies have reported the formation of 4-ABP-DNA adducts, no extensive work has been done to investigate the immunogenicity of 4-ABP-modified DNA and its possible involvement in the generation of antibodies in bladder cancer patients.

Methodology/Principal Findings

Human DNA was modified by N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP), a reactive metabolite of 4-ABP. Structural perturbations in the N-OH-AABP modified DNA were assessed by ultraviolet, fluorescence, and circular dichroic spectroscopy as well as by agarose gel electrophoresis. Genotoxicity of N-OH-AABP modified DNA was ascertained by comet assay. High performance liquid chromatography (HPLC) analysis of native and modified DNA samples confirmed the formation of N-(deoxyguanosine-8-yl)-4-aminobiphenyl (dG-C8-4ABP) in the N-OH-AABP damaged DNA. The experimentally induced antibodies against N-OH-AABP-modified DNA exhibited much better recognition of the DNA isolated from bladder cancer patients as compared to the DNA obtained from healthy individuals in competitive binding ELISA.

Conclusions/Significance

This work shows epitope sharing between the DNA isolated from bladder cancer patients and the N-OH-AABP-modified DNA implicating the role of 4-ABP metabolites in the DNA damage and neo-antigenic epitope generation that could lead to the induction of antibodies in bladder cancer patients.  相似文献   
67.
We engineered and employed a chaperone‐like amyloid‐binding protein Nucleobindin 1 (NUCB1) to stabilize human islet amyloid polypeptide (hIAPP) protofibrils for use as immunogen in mice. We obtained multiple monoclonal antibody (mAb) clones that were reactive against hIAPP protofibrils. A secondary screen was carried out to identify clones that cross‐reacted with amyloid beta‐peptide (Aβ42) protofibrils, but not with Aβ40 monomers. These mAbs were further characterized in several in vitro assays, in immunohistological studies of a mouse model of Alzheimer's disease (AD) and in AD patient brain tissue. We show that mAbs obtained by immunizing mice with the NUCB1‐hIAPP complex cross‐react with Aβ42, specifically targeting protofibrils and inhibiting their further aggregation. In line with conformation‐specific binding, the mAbs appear to react with an intracellular antigen in diseased tissue, but not with amyloid plaques. We hypothesize that the mAbs we describe here recognize a secondary or quaternary structural epitope that is common to multiple amyloid protofibrils. In summary, we report a method to create mAbs that are conformation‐sensitive and sequence‐independent and can target more than one type of protofibril species.  相似文献   
68.
Purpose: The aim of this study is to evaluate plasma biomarkers as predictors for peripheral arterial disease (PAD).

Materials and methods: Prospective longitudinal cohort study of middle-aged individuals from the cardiovascular cohort of the Malmö Diet and Cancer study (MDCS) (n?=?5550; 1991–94). Cystatin C, copeptin, N-terminal pro-B-type natriuretic peptide (N-BNP), midregional proatrial natriuretic peptide (MR-proANP), mid-regional proadrenomedullin (MR-proADM), and conventional risk factors were measured at baseline. The diagnosis of symptomatic PAD was validated in 97% of the cases.

Results: Cumulative incidence of PAD during median follow up of 23.4?years was 4.4% (men 5.9%, women 3.3%). Adjusted for age, sex, smoking, body mass index, hypertension, diabetes mellitus and total cholesterol, copeptin (hazard ratio [HR] 1.46; 95% confidence interval [CI] 1.19–1.80), N-BNP (HR 1.28; 95% CI 1.11–1.48), and cystatin C (HR 1.19; 95% CI 1.10–1.29) were independently associated with incident PAD. Subjects with the three biomarkers copeptin, N-BNP, and cystatin C in the highest quartiles, ran a high risk of incident PAD (HR 3.29; 95% CI 1.76–6.17) compared to those with no biomarker in the highest quartile.

Conclusion: Copeptin, N-BNP, and cystatin C were associated with incident symptomatic PAD, implying that these biomarkers are sensitive indicators of early subclinical PAD.

  • Clinical significance
  • First prospective longitudinal cohort study evaluating Cystatin C, copeptin, N-terminal pro-B-type natriuretic peptide (N-BNP), midregional proatrial natriuretic peptide (MR-proANP), and mid-regional proadrenomedullin (MR-proADM) as predictors for peripheral arterial disease (PAD).

  • Copeptin, N-BNP, and Cystatin C where independently associated with incident symptomatic PAD after adjustment for conventional risk factors.

  • Copeptin, N-BNP, and Cystatin C seem to be sensitive indicators of early subclinical PAD.

  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号