首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   613篇
  免费   67篇
  2023年   3篇
  2021年   6篇
  2019年   7篇
  2018年   6篇
  2017年   6篇
  2016年   11篇
  2015年   21篇
  2014年   32篇
  2013年   32篇
  2012年   28篇
  2011年   33篇
  2010年   36篇
  2009年   34篇
  2008年   32篇
  2007年   28篇
  2006年   24篇
  2005年   26篇
  2004年   19篇
  2003年   11篇
  2002年   9篇
  2001年   8篇
  2000年   16篇
  1999年   8篇
  1998年   16篇
  1997年   17篇
  1996年   10篇
  1995年   13篇
  1994年   10篇
  1993年   13篇
  1991年   13篇
  1990年   11篇
  1989年   8篇
  1988年   9篇
  1987年   3篇
  1985年   12篇
  1984年   9篇
  1983年   7篇
  1982年   20篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1978年   6篇
  1977年   10篇
  1976年   5篇
  1975年   5篇
  1974年   4篇
  1972年   3篇
  1971年   5篇
  1970年   6篇
  1964年   2篇
排序方式: 共有680条查询结果,搜索用时 31 毫秒
41.
Puerto Rico and the surrounding islands rest on the eastern fringe of the Caribbean's Greater Antilles, located less than 100 miles northwest of the Lesser Antilles. Puerto Ricans are genetic descendants of pre‐Columbian peoples, as well as peoples of European and African descent through 500 years of migration to the island. To infer these patterns of pre‐Columbian and historic peopling of the Caribbean, we characterized genetic diversity in 326 individuals from the southeastern region of Puerto Rico and the island municipality of Vieques. We sequenced the mitochondrial DNA (mtDNA) control region of all of the samples and the complete mitogenomes of 12 of them to infer their putative place of origin. In addition, we genotyped 121 male samples for 25 Y‐chromosome single nucleotide polymorphism and 17 STR loci. Approximately 60% of the participants had indigenous mtDNA haplotypes (mostly from haplogroups A2 and C1), while 25% had African and 15% European haplotypes. Three A2 sublineages were unique to the Greater Antilles, one of which was similar to Mesoamerican types, while C1b haplogroups showed links to South America, suggesting that people reached the island from the two distinct continental source areas. However, none of the male participants had indigenous Y‐chromosomes, with 85% of them instead being European/Mediterranean and 15% sub‐Saharan African in origin. West Eurasian Y‐chromosome short tandem repeat haplotypes were quite diverse and showed similarities to those observed in southern Europe, North Africa and the Middle East. These results attest to the distinct, yet equally complex, pasts for the male and female ancestors of modern day Puerto Ricans. Am J Phys Anthropol 155:352–368, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
42.
Natural selection is expected to cause convergence of life histories among taxa as well as correlated evolution of different life‐history traits. Here, we quantify the extent of convergence of five key life‐history traits (adult fire survival, seed storage, degree of sexual dimorphism, pollination mode, and seed‐dispersal mode) and test hypotheses about their correlated evolution in the genus Leucadendron (Proteaceae) from the fire‐prone South African fynbos. We reconstructed a new molecular phylogeny of this highly diverse genus that involves more taxa and molecular markers than previously. This reconstruction identifies new clades that were not detected by previous molecular study and morphological classifications. Using this new phylogeny and robust methods that account for phylogenetic uncertainty, we show that the five life‐history traits studied were labile during the evolutionary history of the genus. This diversity allowed us to tackle major questions about the correlated evolution of life‐history strategies. We found that species with longer seed‐dispersal distances tended to evolve lower pollen‐dispersal distance, that insect‐pollinated species evolved decreased sexual dimorphism, and that species with a persistent soil seed‐bank evolved toward reduced fire‐survival ability of adults.  相似文献   
43.
Rhizosphere is the complex place of numerous interactions between plant roots, microbes and soil fauna. Whereas plant interactions with aboveground organisms are largely described, unravelling plant belowground interactions remains challenging. Plant root chemical communication can lead to positive interactions with nodulating bacteria, mycorriza or biocontrol agents or to negative interactions with pathogens or root herbivores. A recent study1 suggested that root exudates contribute to plant pathogen resistance via secretion of antimicrobial compounds. These findings point to the importance of plant root exudates as belowground signalling molecules, particularly in defense responses. In our report,2 we showed that under Fusarium attack the barley root system launched secretion of phenolic compounds with antimicrobial activity. The secretion of de novo biosynthesized t-cinnamic acid induced within 2 days illustrates the dynamic of plant defense mechanisms at the root level. We discuss the costs and benefits of induced defense responses in the rhizosphere. We suggest that plant defense through root exudation may be cultivar dependent and higher in wild or less domesticated varieties.Key words: root exudates, plant defense, t-cinnamic acid, fusarium, induced defensePlants grow and live in very complex and changing ecosystems. Because plants lack the mobility to escape from attack by pathogens or herbivores, they have developed constitutive and in addition inducible defenses that are triggered by spatiotemporally dynamic signaling mechanisms. These defenses counteract the aggressor directly via toxins or defense plant structures or indirectly by recruitment of antagonists of aggressors. Whereas induced defenses are well described in aboveground interactions, evidence of the occurrence of such mechanisms in belowground interactions remains limited. The biosynthesis of a defensive molecule could be both constitutive and inducible with a low level of a preformed pool (Fig. 1). In addition, upon encounter of an attacking organism, those levels could be induced to rise locally to a high level of active compound that is able to disarm the pathogen.2,3 Only a few examples show that root exudates play a role in induced plant defense. Hairy roots of Ocimum basilicum secrete rosmarinic acid only when challenged by the pathogenic fungus Pythium ultimum.4 Wurst et al.5 reported on the induction of irridoid glycosides in root exudates of Plantago lanceolata in presence of nematodes. In vivo labelling experiments2 with 13CO2 showed the induction of phenolic compounds secreted by barley roots after Fusarium graminearum infection and the de novo biosynthesis of root secreted t-cinnamic acid within 2 days. These results show that the pool of induced t-cinnamic acid originated from both pre-formed and newly formed carbon pools (Fig. 1), highlighting a case of belowground induced defense inside and outside the root system.Open in a separate windowFigure 1Suggested mechanisms for the induction of root defense exudates in barley in response to Fusarium attack. Upon pathogen attack by Fusarium, the initial preformed pool of phenolic compounds is increased by the addition of inducible, de novo biosynthesized t-cinnamic acid. Both, the preformed pool and the de novo biosynthesized pool fuel the exudation of defense compounds from infected roots.The concept of fitness costs is frequently presented to explain the coexistence of both constitutive and induced defense.6 In the case of induced defense, resources are invested in defenses only when the plant is under attack. In the absence of an infection, plants can optimize allocation of their resources to reproduction and growth to compete with neighbours.7 Constitutive defenses are thought to be more beneficial when the probability of attack is high, whereas adjustable, induced defenses are more valuable to fight against an unpredictable pathogen. Non disturbed soil is a heterogeneous matrix where biodiversity is very high and patchy8,9 and organism motility is rather restricted.10 As a consequence of the patchiness, belowground environment is expected to be favourable to selection for induced responses.11 The absence of defense root exudates between two infections may form an unpredictable environment for soil pathogens and reduce the chance for adaptation of root attackers. Plants may also use escape strategies to reduce the effect of belowground pathogens. Henkes et al. (unpublished) showed that Fusarium-infected barley plants reduced carbon allocation towards infected roots within a day and increased allocation carbon to uninfected roots. These results illustrate how reallocation of carbon toward non infected root parts represents a way to limit the negative impact of root infection.We have demonstrated the potential of barley plants to defend themselves against soil pathogen by root exudation.2 Even the barley cultivar ‘Barke’ used in our study, a modern cultivated variety, was able to launch defense machinery via exudation of antimicrobial compounds when infected by F. graminearum. We suggest that plant defense through root exudation might be cultivar dependent and perhaps higher in wild or less domesticated varieties. Taddei et al.12 reported that constitutivelyproduced root exudates from a resistant Gladiolus cultivar inhibit spore germination of Fusarium oxysporum whereas root exudates from a susceptible cultivar do not affect F. oxysporum germination. Root exudates from the resistant cultivar contained higher amounts of aromaticphenolic compounds compared to the susceptible cultivar and these compounds may be responsible for the inhibition of spore germination. Metabolic profiling of wheat cultivars, ‘Roblin’ and ‘Sumai3’, respectively, susceptible and resistant to Fusarium Head Blight, showed that t-cinnamic acid was a discriminating factor responsible for resistance/defense function.13 Therefore it is likely that wild barley varieties hold higher defense capacities compare to cultivated varieties selected for high yield. In the future, plant breeders in organic and low-input farming could use root-system defense ability as new trait in varietal variation.  相似文献   
44.
The name “Wampanoag” means “Eastern People” or “People of the First Light” in the local dialect of the Algonquian language. Once extensively populating the coastal lands and neighboring islands of the eastern United States, the Wampanoag people now consist of two federally recognized tribes, the Aquinnah and Mashpee, the state‐recognized Seaconke Wampanoag tribe, and a number of bands and clans in present‐day southern Massachusetts. Because of repeated epidemics and conflicts with English colonists, including King Philip's War of 1675–76, and subsequent colonial laws forbidding tribal identification, the Wampanoag population was largely decimated, decreasing in size from as many as 12,000 individuals in the 16th century to less than 400, as recorded in 1677. To investigate the influence of the historical past on its biological ancestry and native cultural identity, we analyzed genetic variation in the Seaconke Wampanoag tribe. Our results indicate that the majority of their mtDNA haplotypes belongs to West Eurasian and African lineages, thus reflecting the extent of their contacts and interactions with people of European and African descent. On the paternal side, Y‐chromosome analysis identified a range of Native American, West Eurasian, and African haplogroups in the population, and also surprisingly revealed the presence of a paternal lineage that appears at its highest frequencies in New Guinea and Melanesia. Comparison of the genetic data with genealogical and historical information allows us to reconstruct the tribal history of the Seaconke Wampanoag back to at least the early 18th century. Am J Phys Anthropol 142:579–589, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
45.
Carotenoid turnover was investigated in mature leaves of Arabidopsis (Arabidopsis thaliana) by 14CO2 pulse-chase labeling under control-light (CL; 130 μmol photons m−2 s−1) and high-light (HL; 1,000 μmol photons m−2 s−1) conditions. Following a 30-min 14CO2 administration, photosynthetically fixed 14C was quickly incorporated in β-carotene (β-C) and chlorophyll a (Chl a) in all samples during a chase of up to 10 h. In contrast, 14C was not detected in Chl b and xanthophylls, even when steady-state amounts of the xanthophyll-cycle pigments and lutein increased markedly, presumably by de novo synthesis, in CL-grown plants under HL. Different light conditions during the chase did not affect the 14C fractions incorporated in β-C and Chl a, whereas long-term HL acclimation significantly enhanced 14C labeling of Chl a but not β-C. Consequently, the maximal 14C signal ratio between β-C and Chl a was much lower in HL-grown plants (1:10) than in CL-grown plants (1:4). In lut5 mutants, containing α-carotene (α-C) together with reduced amounts of β-C, remarkably high 14C labeling was found for α-C while the labeling efficiency of Chl a was similar to that of wild-type plants. The maximum 14C ratios between carotenes and Chl a were 1:2 for α-C:Chl a and 1:5 for β-C:Chl a in CL-grown lut5 plants, suggesting high turnover of α-C. The data demonstrate continuous synthesis and degradation of carotenes and Chl a in photosynthesizing leaves and indicate distinct acclimatory responses of their turnover to changing irradiance. In addition, the results are discussed in the context of photosystem II repair cycle and D1 protein turnover.Carotenoids are classified as accessory pigments in photosynthesis because they augment light harvesting in the blue spectral region by transferring the absorbed light energy to chlorophyll (Chl). However, the universal occurrence of carotenoids in photosynthetic cells, from bacteria to higher plants, indicates their essential roles, rather than mere accessory roles, in photosynthesis. Under excess light, carotenoids provide protection against photooxidative damage by facilitating dissipation of excitation energy from singlet- or triplet-state Chl and scavenging highly reactive singlet oxygen, which is generated through interaction between triplet excited Chl and oxygen (Demmig-Adams, 1990; Müller et al., 2001). These photoprotective functions make carotenoids indispensable for oxygenic photosynthesis, as demonstrated by lethal effects of inhibitors of carotenoid biosynthesis in plants (Bramley, 1993). Regulation of light harvesting and photoprotection by carotenoids requires their close proximity as well as the proper orientation to Chl molecules in pigment-protein complexes of PSI and PSII. Furthermore, a small fraction of non-protein-bound carotenoids serves as antioxidants in the lipid phase of photosynthetic membranes (Havaux and Niyogi, 1999; Havaux et al., 2004) and influences the structure and fluidity of the lipid bilayer (Gruszecki and Strzałka, 2005). Despite these and other lines of defense, the PSII reaction center polypeptide D1, and to a lesser extent also D2, undergo frequent photooxidative damage and repair in the light (Melis, 1999; Baena-González and Aro, 2002). When the repair process cannot keep up with the rate of photodamage, the overall quantum yield of PSII declines.Carotenoids are derived from isoprenoid precursors in plastids (for reviews on carotenoid biosynthesis in plants, see Lichtenthaler, 1999; Hirschberg, 2001; DellaPenna and Pogson, 2006; Giuliano et al., 2008; Tanaka et al., 2008; Cazzonelli and Pogson, 2010). Following the formation of linear C40 lycopene, the pathway splits into two branches of major cyclic carotenoids: the β,β-branch gives rise to β-carotene (β-C) having two β-rings, whereas the β,ϵ-branch leads to formation of α-carotene (α-C) having one β-ring and one ϵ-ring. Hydroxylation of β-C and α-C produces the xanthophylls zeaxanthin (Z) and lutein (L), respectively. In the β,β-branch, epoxidation of the β-rings of Z results in successive synthesis of antheraxanthin (A) and violaxanthin (V); subsequently, V can be converted to neoxanthin (N), the last carotenoid product of the β,β-branch. Except for some species (García-Plazaola et al., 2007), L does not undergo β-ring epoxidation and the β,ϵ-branch thus stops with L, the most abundant carotenoid in leaves.Each of these carotenoids occupies specific binding sites in the photosynthetic apparatus to fulfill distinct roles. In both PSI and PSII, carotenes (α-C and β-C) are generally bound in core complexes, which also harbor Chl a molecules, while the majority of xanthophylls (L, Z, A, V, and N) are bound in light-harvesting antenna complexes together with Chl a and Chl b molecules (Bassi et al., 1993; Lee and Thornber, 1995). Accumulation of β-C in core complexes is a common feature of diverse photosynthetic organisms, whereas the occurrence of α-C in addition to β-C is restricted to certain taxa. For higher plants, α-C has been found in leaves of some, but not all, shade-tolerant species (Thayer and Björkman, 1990; Demmig-Adams and Adams, 1992; Demmig-Adams, 1998; Matsubara et al., 2009). Based on this photoacclimatory behavior, it has been proposed that α-C may function as a light-harvesting pigment while β-C may contribute to photoprotection (Krause et al., 2001), presumably by scavenging singlet oxygen and mediating a cyclic electron transfer around PSII (Tracewell et al., 2001; Telfer, 2005).Pronounced light-dependent changes are also observed for xanthophyll composition in light-harvesting antenna complexes. In a short term (minutes to hours), operation of the xanthophyll cycle, involving Z, A, and V, modulates levels of Z in a light-dependent manner. It is widely accepted that Z is able to enhance the dissipation of excess light energy from singlet excited Chl while V is not (Demmig-Adams, 1990; Müller et al., 2001). Long-term acclimation (days) to strong irradiance typically results in an increased pool size of the xanthophyll-cycle pigments (V + A + Z) and downsizing of PSII antenna, as indicated by a greater Chl a-to-Chl b ratio (Demmig-Adams and Adams, 1992; Demmig-Adams, 1998; Matsubara et al., 2009). Based on the observed changes in steady-state amounts of xanthophylls and carotenes following irradiance shifts, alterations in the balance between biosynthesis and degradation, or turnover, have been implicated as a mechanism for long-term adjustment of carotenoid levels in leaves (Förster et al., 2009). However, just how much biosynthesis and degradation of different carotenoids occurs in photosynthesizing green leaves is an open question to date.In order to gain insight into carotenoid turnover of mature leaves, we conducted 14CO2 pulse-chase labeling experiments with Arabidopsis (Arabidopsis thaliana) plants. Carotenoid turnover has been studied in algae in the past by applying [14C]bicarbonate (Blass et al., 1959; Grumbach et al., 1978); for example, no more than 1% to 2% of the photosynthetically incorporated 14C was allocated to the lipophilic fraction containing Chl and carotenoid in Chlorella pyrenoidosa after a 2-h pulse application (Grumbach et al., 1978). Even lower labeling efficiency is expected for photosynthetic pigments in nongrowing green leaves, in which pigment turnover takes place almost exclusively as part of the maintenance and acclimation of photosynthetic membranes. To overcome this intrinsic but anticipated difficulty, a 14CO2 application setup was established for efficient and reproducible 14CO2 incorporation in detached leaves of Arabidopsis during a short (30-min) pulse period. Moreover, a method of pigment separation was developed for 14C detection in concentrated leaf pigment extracts using a radio-HPLC system. Because carotenoid composition exhibits marked sun-shade responses in leaves (Demmig-Adams and Adams, 1992; Demmig-Adams, 1998; Matsubara et al., 2009), 14CO2 labeling patterns were studied in three different sets of Arabidopsis plants: (1) plants grown under 130 μmol photons m−2 s−1 (control light [CL]) and exposed to CL during a chase period of up to 10 h (CL plants); (2) plants acclimated to 1,000 μmol photons m−2 s−1 (high light [HL]) for 2 weeks and exposed to HL during the chase period (HL plants); and (3) plants grown under CL but exposed to HL during the chase period (CL→HL plants). These treatments simulated short-term (CL→HL) and long-term (CL or HL) responses to irradiance. Finally, as 14C was found to be rapidly incorporated in β-C and Chl a molecules in leaves of wild-type plants, in which β-C represents the only carotene species, 14C labeling experiments were also conducted with leaves of lut5 mutants containing both α-C and β-C (Fiore et al., 2006; Kim and DellaPenna, 2006) to compare turnover of the two carotenes.  相似文献   
46.
The main objective of this study was to identify genomic regions involved in biomass heterosis using QTL, generation means, and mode-of-inheritance classification analyses. In a modified North Carolina Design III we backcrossed 429 recombinant inbred line and 140 introgression line populations to the two parental accessions, C24 and Col-0, whose F 1 hybrid exhibited 44% heterosis for biomass. Mid-parent heterosis in the RILs ranged from ?31 to 99% for dry weight and from ?58 to 143% for leaf area. We detected ten genomic positions involved in biomass heterosis at an early developmental stage, individually explaining between 2.4 and 15.7% of the phenotypic variation. While overdominant gene action was prevalent in heterotic QTL, our results suggest that a combination of dominance, overdominance and epistasis is involved in biomass heterosis in this Arabidopsis cross.  相似文献   
47.
Malaria is still a major public health problem in Brazil, with approximately 306 000 registered cases in 2009, but it is estimated that in the early 1940s, around six million cases of malaria occurred each year. As a result of the fight against the disease, the number of malaria cases decreased over the years and the smallest numbers of cases to-date were recorded in the 1960s. From the mid-1960s onwards, Brazil underwent a rapid and disorganized settlement process in the Amazon and this migratory movement led to a progressive increase in the number of reported cases. Although the main mosquito vector (Anopheles darlingi) is present in about 80% of the country, currently the incidence of malaria in Brazil is almost exclusively (99,8% of the cases) restricted to the region of the Amazon Basin, where a number of combined factors favors disease transmission and impair the use of standard control procedures. Plasmodium vivax accounts for 83,7% of registered cases, while Plasmodium falciparum is responsible for 16,3% and Plasmodium malariae is seldom observed. Although vivax malaria is thought to cause little mortality, compared to falciparum malaria, it accounts for much of the morbidity and for huge burdens on the prosperity of endemic communities. However, in the last few years a pattern of unusual clinical complications with fatal cases associated with P. vivax have been reported in Brazil and this is a matter of concern for Brazilian malariologists. In addition, the emergence of P. vivax strains resistant to chloroquine in some reports needs to be further investigated. In contrast, asymptomatic infection by P. falciparum and P. vivax has been detected in epidemiological studies in the states of Rondonia and Amazonas, indicating probably a pattern of clinical immunity in both autochthonous and migrant populations. Seropidemiological studies investigating the type of immune responses elicited in naturally-exposed populations to several malaria vaccine candidates in Brazilian populations have also been providing important information on whether immune responses specific to these antigens are generated in natural infections and their immunogenic potential as vaccine candidates. The present difficulties in reducing economic and social risk factors that determine the incidence of malaria in the Amazon Region render impracticable its elimination in the region. As a result, a malaria-integrated control effort - as a joint action on the part of the government and the population - directed towards the elimination or reduction of the risks of death or illness, is the direction adopted by the Brazilian government in the fight against the disease.  相似文献   
48.

Introduction  

Rheumatoid arthritis (RA) frequently involves the loss of tolerance to citrullinated antigens, which may play a role in pathogenicity. Citrullinated fibrinogen is commonly found in inflamed synovial tissue and is a frequent target of autoantibodies in RA patients. To obtain insight into the B-cell response to citrullinated fibrinogen in RA, its autoepitopes were systematically mapped using a new methodology.  相似文献   
49.
50.
Species distributional or trait data based on range map (extent‐of‐occurrence) or atlas survey data often display spatial autocorrelation, i.e. locations close to each other exhibit more similar values than those further apart. If this pattern remains present in the residuals of a statistical model based on such data, one of the key assumptions of standard statistical analyses, that residuals are independent and identically distributed (i.i.d), is violated. The violation of the assumption of i.i.d. residuals may bias parameter estimates and can increase type I error rates (falsely rejecting the null hypothesis of no effect). While this is increasingly recognised by researchers analysing species distribution data, there is, to our knowledge, no comprehensive overview of the many available spatial statistical methods to take spatial autocorrelation into account in tests of statistical significance. Here, we describe six different statistical approaches to infer correlates of species’ distributions, for both presence/absence (binary response) and species abundance data (poisson or normally distributed response), while accounting for spatial autocorrelation in model residuals: autocovariate regression; spatial eigenvector mapping; generalised least squares; (conditional and simultaneous) autoregressive models and generalised estimating equations. A comprehensive comparison of the relative merits of these methods is beyond the scope of this paper. To demonstrate each method's implementation, however, we undertook preliminary tests based on simulated data. These preliminary tests verified that most of the spatial modeling techniques we examined showed good type I error control and precise parameter estimates, at least when confronted with simplistic simulated data containing spatial autocorrelation in the errors. However, we found that for presence/absence data the results and conclusions were very variable between the different methods. This is likely due to the low information content of binary maps. Also, in contrast with previous studies, we found that autocovariate methods consistently underestimated the effects of environmental controls of species distributions. Given their widespread use, in particular for the modelling of species presence/absence data (e.g. climate envelope models), we argue that this warrants further study and caution in their use. To aid other ecologists in making use of the methods described, code to implement them in freely available software is provided in an electronic appendix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号