首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.

Objectives

From an anthropological genetic perspective, little is known about the ethnogenesis of African descendants in Puerto Rico. Furthermore, historical interactions between Indigenous Caribbean and African descendant peoples that may be reflected in the ancestry of contemporary populations are understudied. Given this dearth of genetic research and the precedence for Afro-Indigenous interactions documented by historical, archeological, and other lines of evidence, we sought to assess the biogeographic origins of African descendant Puerto Ricans and to query the potential for Indigenous ancestry within this community.

Materials and Methods

Saliva samples were collected from 58 self-identified African descendant Puerto Ricans residing in Puerto Rico. We sequenced whole mitochondrial genomes and genotyped Y chromosome haplogroups for each male individual (n = 25). Summary statistics, comparative analyses, and network analysis were used to assess diversity and variation in haplogroup distribution between the sample and comparative populations.

Results

As indicated by mitochondrial haplogroups, 66% had African, 5% had European, and 29% had Indigenous American matrilines. Along the Y chromosome, 52% had African, 28% had Western European, 16% had Eurasian, and, notably, 4% had Indigenous American patrilines. Both mitochondrial and Y chromosome haplogroup frequencies were significantly different from several comparative populations.

Discussion

Biogeographic origins are consistent with historical accounts of African, Indigenous American, and European ancestry. However, this first report of Indigenous American paternal ancestry in Puerto Rico suggests distinctive features within African descendant communities on the island. Future studies expanding sampling and incorporating higher resolution genetic markers are necessary to more fully understand African descendant history in Puerto Rico.  相似文献   

2.
Historical discourses about the Caribbean often chronicle West African and European influence to the general neglect of indigenous people’s contributions to the contemporary region. Consequently, demographic histories of Caribbean people prior to and after European contact are not well understood. Although archeological evidence suggests that the Lesser Antilles were populated in a series of northward and eastern migratory waves, many questions remain regarding the relationship of the Caribbean migrants to other indigenous people of South and Central America and changes to the demography of indigenous communities post-European contact. To explore these issues, we analyzed mitochondrial DNA and Y-chromosome diversity in 12 unrelated individuals from the First Peoples Community in Arima, Trinidad, and 43 unrelated Garifuna individuals residing in St. Vincent. In this community-sanctioned research, we detected maternal indigenous ancestry in 42% of the participants, with the remainder having haplotypes indicative of African and South Asian maternal ancestry. Analysis of Y-chromosome variation revealed paternal indigenous American ancestry indicated by the presence of haplogroup Q-M3 in 28% of the male participants from both communities, with the remainder possessing either African or European haplogroups. This finding is the first report of indigenous American paternal ancestry among indigenous populations in this region of the Caribbean. Overall, this study illustrates the role of the region’s first peoples in shaping the genetic diversity seen in contemporary Caribbean populations.  相似文献   

3.
mtDNA affinities of the peoples of North-Central Mexico   总被引:4,自引:0,他引:4       下载免费PDF全文
mtDNA haplotypes of representatives of the cosmopolitan peoples of north-central Mexico were studied. Two hundred twenty-three samples from individuals residing in vicinities of two localities in north-central Mexico were analyzed. A combination of strategies was employed to identify the origin of each haplotype, including length variation analysis of the COII and tRNALYS intergenic region, nucleotide sequence analysis of control region hypervariable segment 1, and RFLP analysis of PCR products spanning diagnostic sites. Analysis of these data revealed that the majority of the mtDNA haplotypes were of Native American origin, belonging to one of four primary Native American haplogroups. Others were of European or African origin, and the frequency of African haplotypes was equivalent to that of haplotypes of European derivation. These results provide diagnostic, discrete character, molecular genetic evidence that, together with results of previous studies of classical genetic systems, is informative with regard to both the magnitude of African admixture and the relative maternal contribution of African, European, and Native American peoples to the genetic heritage of Mexico. Phylogenetic analysis revealed that African sequences formed a basal, paraphyletic group.  相似文献   

4.
Colombia is a country with great geographic heterogeneity and marked regional differences in pre‐Columbian native population density and in the extent of past African and European immigration. As a result, Colombia has one of the most diverse populations in Latin America. Here we evaluated ancestry in over 1,700 individuals from 24 Colombian populations using biparental (autosomal and X‐Chromosome), maternal (mtDNA), and paternal (Y‐chromosome) markers. Autosomal ancestry varies markedly both within and between regions, confirming the great genetic diversity of the Colombian population. The X‐chromosome, mtDNA, and Y‐chromosome data indicate that there is a pattern across regions indicative of admixture involving predominantly Native American women and European and African men. Am J Phys Anthropol 143:13–20, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
The introduction of Anolis cristatellus from the multiple species anole community of Puerto Rico in the Greater Antilles to the island of Dominica in the Lesser Antilles, with its solitary endemic anole, provides an example of a very recent, timed, single colonization. We investigate the geographic origin and adaptive potential of the Dominican population using a range of methods including mtDNA phylogeography, nuclear microsatellite variation and multiple paternity studies, as well as heritability estimates, common garden experiments and comparative geographic studies of quantitative scalation traits. Phylogeographic analysis of NADH2 and microsatellite studies suggests that the Dominican population arose from a set of individuals from the central west area of Puerto Rico within their endemic range. The multiple‐individual inoculation, together with sperm storage and evidence of multiple paternity indicate genetic variability and suggest the potential for adaptation by natural selection. Estimates of heritability, common garden experiments and broad sense QST/FST ratios, linked to replicated comparisons along elevational transects go some way to suggesting that the invasive populations may be adapting by natural selection, in parallel with the endemic anole, in the brief period since their introduction.  相似文献   

6.
We analyzed mitochondrial DNA (mtDNA) restriction-site variation in bananaquit (Coereba flaveola; Aves, Coerebinae) populations sampled on 12 Caribbean islands and at 5 continental localities in Central America and northern South America. Multiple fixed restriction-site differences genetically defined several regional bananaquit populations. An mtDNA clade representing all Jamaican bananaquits was the most divergent; the estimated average sequence divergence (dxy) between Jamaican and all other mtDNA haplotypes surveyed was 0.027. Three groups of populations, representing Central America, northern South America, and the eastern Antilles (Puerto Rico to Grenada) were nearly equally differentiated among themselves (average dxy = 0.014), and may represent a single, recent range expansion. Within the eastern Antilles, three geographically restricted haplotype groups were identified: Puerto Rico, north-central Lesser Antilles (U.S. Virgin Islands to St. Lucia), and Grenada–St. Vincent. The evolutionary relationships of these groups were not clear. Genetic homogeneity of the island populations from the U.S. Virgin Islands to St. Lucia suggested a recent spread of a specific north-central Lesser Antillean haplotype through most of those islands. Haplotype variation across this region indicated that this spread may have occurred in two waves, first through the southernmost islands of St. Lucia, Martinique, and Dominica, and more recently from Guadeloupe to the north. The geographic distribution of mtDNA haplotypes, and of bananaquit populations, suggests periods of invasiveness followed by relative geographic quiescence. Although most genetic studies of bird populations have revealed homogeneity over large geographic areas, our findings provide a remarkable counterexample of strong geographic structuring of mtDNA variation over relatively small distances. Furthermore, although the mtDNA data were consistent with several subspecific distinctions, it was clear that named subspecies do not define equally differentiated evolutionary entities.  相似文献   

7.
The Caribbean basin is home to some of the most complex interactions in recent history among previously diverged human populations. Here, we investigate the population genetic history of this region by characterizing patterns of genome-wide variation among 330 individuals from three of the Greater Antilles (Cuba, Puerto Rico, Hispaniola), two mainland (Honduras, Colombia), and three Native South American (Yukpa, Bari, and Warao) populations. We combine these data with a unique database of genomic variation in over 3,000 individuals from diverse European, African, and Native American populations. We use local ancestry inference and tract length distributions to test different demographic scenarios for the pre- and post-colonial history of the region. We develop a novel ancestry-specific PCA (ASPCA) method to reconstruct the sub-continental origin of Native American, European, and African haplotypes from admixed genomes. We find that the most likely source of the indigenous ancestry in Caribbean islanders is a Native South American component shared among inland Amazonian tribes, Central America, and the Yucatan peninsula, suggesting extensive gene flow across the Caribbean in pre-Columbian times. We find evidence of two pulses of African migration. The first pulse—which today is reflected by shorter, older ancestry tracts—consists of a genetic component more similar to coastal West African regions involved in early stages of the trans-Atlantic slave trade. The second pulse—reflected by longer, younger tracts—is more similar to present-day West-Central African populations, supporting historical records of later transatlantic deportation. Surprisingly, we also identify a Latino-specific European component that has significantly diverged from its parental Iberian source populations, presumably as a result of small European founder population size. We demonstrate that the ancestral components in admixed genomes can be traced back to distinct sub-continental source populations with far greater resolution than previously thought, even when limited pre-Columbian Caribbean haplotypes have survived.  相似文献   

8.
The mtDNA variation has been studied in representatives of the Russkoe Ust'e (n = 30), Kolyma (n = 31), and Markovo (n = 26) ethnic subgroups originating from Russian military men, hunters, and fishers who married local Yukaghir women and settled at the Arctic Ocean coast and on the Anadyr' River more than 350 years ago. The mtDNA haplotypes characteristic of indigenous Siberian peoples have been demonstrated to form the basis of the mitochondrial gene pool of long-term Russian resident populations of the region. Only one of 30 identified haplotypes belonging to 11 haplogroups (H2a) is characteristic of European populations. The C and D haplogroups are the most diverse. The analysis has revealed the characteristics of the population structure of the long-term Russian resident populations and allowed them to be interpreted in terms of recent historical and environmental processes.  相似文献   

9.

Invasive populations of green iguanas (Iguanidae: Iguana iguana) are widely established beyond their native Central, South American, and Lesser Antillean range in various islands of the Pacific, Florida USA, and in the Greater Caribbean Region. Although widespread, information about these invasions is scarce. Here we determine the origin of invasive populations of green iguanas in Puerto Rico, Fiji, The Caymans, Florida USA, The Dominican Republic, the US Virgin Islands (USVI) of St. Thomas and St. Croix, and a U.S.A pet store. We sampled 120 individuals from these locations and sequenced one mitochondrial (ND4) and two nuclear (PAC and NT3) loci. We also include a preliminary characterization of population structure throughout Puerto Rico using six microsatellite loci to genotype individuals across 10 sampling sites. Comparing the genealogical relationships of all our samples to published sequencing data from the native range, we found that sampled populations were largely a product of populations from Colombia and El Salvador; two countries with multiple, industrial-size pet iguana farming operations. Notably, we found that haplotypes detected exclusively in the USVI and Puerto Rico’s outlying island of Vieques are closely linked to green iguanas native to Saba and Montserrat (Lesser Antilles); a clade not reported in the pet trade. Our population genetic analyses did not reveal isolation among sampling sites in Puerto Rico, rather the evidence supported admixture across the island. This study highlights the roles of the pet trade and lack of regulation in the spread of green iguanas beyond their native range.

  相似文献   

10.
Mitochondrial DNA (mtDNA) nucleotide sequences of African origin are found in various European populations at a low frequency (on average, less than 1%). Data on mtDNA variation in Eurasian and African populations have been analyzed, and African mtDNA lineages have been found in Europeans. It has been demonstrated that, despite the high diversity of mtDNA haplotypes of African origin in Europeans, few monophyletic clusters of African lineages are characterized by long-term diversity formed in Europe. Only two such mtDNA clusters (from haplogroups L1b and L3b) have been found, their evolutionary age not exceeding 6500 years. European and African populations have been compared with respect to the frequency distributions of the alleles of autosomal microsatellite loci found in Russian carriers of African mtDNA haplotypes. It has been demonstrated that alleles typical of Europeans are characteristic of the autosomal genotypes of these Russian individuals.  相似文献   

11.
The differential relative contribution of males and females from Africa and Europe to individual African American genomes is relevant to mapping genes utilizing admixture analysis. The assessment of ancestral population contributions to the four types of genomic DNA (autosomes, X and Y chromosomes, and mitochondrial) with their differing modes of inheritance is most easily addressed in males. A thorough evaluation of 93 African American males for 2,018 autosomal single nucleotide polymorphic (SNP) markers, 121 X chromosome SNPs, 10 Y chromosome haplogroups specified by SNPs, and six haplogroup defining mtDNA SNPs is presented. A distinct lack of correlation observed between the X chromosome and the autosomal admixture fractions supports separate treatment of these chromosomes in admixture-based gene mapping applications. The European genetic contributions were highest (and African lowest) for the Y chromosome (28.46%), followed by the autosomes (19.99%), then the X chromosome (12.11%), and the mtDNA (8.51%). The relative order of admixture fractions in the genomic compartments validates previous studies that suggested sex-biased gene flow with elevated European male and African female contributions. There is a threefold higher European male contribution compared with European females (Y chromosome vs. mtDNA) to the genomes of African American individuals meaning that admixture-based gene discovery will have the most power for the autosomes and will be more limited for X chromosome analysis. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

12.
The ancestry of New World cattle was investigated through the analysis of mitochondrial and Y chromosome variation in Creoles from Argentina, Brazil, Mexico, Paraguay and the United States of America. Breeds that influenced the Creoles, such as Iberian native, British and Zebu, were also studied. Creoles showed high mtDNA diversity (H = 0.984 ± 0.003) with a total of 78 haplotypes, and the European T3 matriline was the most common (72.1%). The African T1a haplogroup was detected (14.6%), as well as the ancestral African‐derived AA matriline (11.9%), which was absent in the Iberian breeds. Genetic proximity among Creoles, Iberian and Atlantic Islands breeds was inferred through their sharing of mtDNA haplotypes. Y‐haplotype diversity in Creoles was high (H = 0.779 ± 0.019), with several Y1, Y2 and Y3 haplotypes represented. Iberian patrilines in Creoles were more difficult to infer and were reflected by the presence of H3Y1 and H6Y2. Y‐haplotypes confirmed crossbreeding with British cattle, mainly of Hereford with Pampa Chaqueño and Texas Longhorn. Male‐mediated Bos indicus introgression into Creoles was found in all populations, except Argentino1 (herd book registered) and Pampa Chaqueño. The detection of the distinct H22Y3 patriline with the INRA189‐90 allele in Caracú suggests introduction of bulls directly from West Africa. Further studies of Spanish and African breeds are necessary to elucidate the origins of Creole cattle, and determine the exact source of their African lineages.  相似文献   

13.
Aim Hypotheses proposed for lineage diversification of tropical montane species have rarely been tested within oceanic islands. Our goal was to understand how basin barriers and Pleistocene climatic fluctuations shaped the distribution of diversity in Eleutherodactylus portoricensis (Eleutherodactylidae), a frog endemic to the montane rain forests of Puerto Rico. Location The north‐eastern (Luquillo) and south‐eastern (Cayey) mountains of Puerto Rico. Methods We generated mitochondrial DNA (mtDNA) control region sequences (c. 565 bp) from 144 individuals of E. portoricensis representing 16 localities, and sequenced 646 bp of cytochrome b and 596 bp of nuclear DNA (nDNA) rhodopsin exon and intron 1 from a subset of individuals. We conducted a phylogenetic analysis on the mtDNA sequence data and explored population substructure with maximum parsimony networks, a spatial analysis of molecular variance, and pairwise FST analysis. Coalescent simulations were performed to test alternative models of population divergence in response to late Pleistocene interglacial periods. Historical demography was assessed through coalescent analyses and Bayesian skyline plots. Results We found: (1) two highly divergent groups associated with the disjunct Luquillo and Cayey Mountains, respectively; (2) a shallow mtDNA genetic discontinuity across the La Plata Basin within the Cayey Mountains; (3) phylogeographic congruence between nDNA and mtDNA markers; (4) divergence dates for both mtDNA and nDNA pre‐dating the Holocene interglacial (c. 10 ka), and nDNA suggesting divergence in the penultimate interglacial (c. 245 ka); and (5) historical demographic stability in both lineages. Main conclusions The low‐elevation Caguas Basin is a long‐term barrier to gene flow between the two montane frog populations. Measures of genetic diversity for mtDNA were similar in both lineages, but lower nDNA diversity in the Luquillo Mountains lineage suggests infrequent dispersal between the two mountain ranges and colonization by a low‐diversity founder population. Population divergence began prior to the Holocene interglacial. Stable population sizes over time indicate a lack of demonstrable demographic response to climatic changes during the last glacial period. This study highlights the importance of topographic complexity in promoting within‐island vicariant speciation in the Greater Antilles, and indicates long‐term persistence and lineage diversification despite late Pleistocene climatic oscillations.  相似文献   

14.
To study the mitochondrial gene pool structure in Yakuts, polymorphism of mtDNA hypervariable segment I (16,024-16,390) was analyzed in 191 people sampled from the indigenous population of the Sakha Republic. In total, 67 haplotypes of 14 haplogroups were detected. Most (91.6%) haplotypes belonged to haplogroups A, B, C, D, F, G, M*, and Y, which are specific for East Eurasian ethnic groups; 8.4% haplotypes represented Caucasian haplogroups H, HV1, J, T, U, and W. A high frequency of mtDNA types belonging to Asian supercluster M was peculiar for Yakuts: mtDNA types belonging to haplogroup C, D, or G and undifferentiated mtDNA types of haplogroup M (M*) accounted for 81% of all haplotypes. The highest diversity was observed for haplogroups C and D, which comprised respectively 22 (44%) and 18 (30%) haplotypes. Yakuts showed the lowest genetic diversity (H = 0.964) among all Turkic ethnic groups. Phylogenetic analysis testified to a common genetic substrate of Yakuts, Mongols, and Central Asian (Kazakh, Kyrgyz, Uigur) populations. Yakuts proved to share 21 (55.5%) mtDNA haplogroups with the Central Asian ethnic groups and Mongols. Comparisons with modern paleo-Asian populations (Chukcha, Itelmen, Koryaks) revealed three (8.9%) haplotypes common for Yakuts and Koryaks. The results of mtDNA analysis disagree with the hypothesis of an appreciable paleo-Asian contribution to the modern Yakut gene pool.  相似文献   

15.
MtDNA and Y-chromosome lineages in the Yakut population   总被引:1,自引:0,他引:1  
The structure of female (mtDNA) and male (Y-chromosome haplotypes) lineages in the Yakut population was examined. To determine mtDNA haplotypes, sequencing of hypervariable segment I and typing of haplotype-specific point substitutions in the other parts of the mtDNA molecule were performed. Y haplogroups were identified through typing of biallelic polymorphisms in the nonrecombining part of the chromosome. Haplotypes within haplogroups were analyzed with seven microsatellite loci. Mitochondrial gene pool of Yakuts is mainly represented by the lineages of eastern Eurasian origin (haplogroups A, B, C, D, G, and F). In Yakuts haplogroups C and D showing the total frequency of almost 80% and consisting of 12 and 10 different haplopypes, respectively, were the most frequent and diverse. The total part of the lineages of western Eurasian origin ("Caucasoid") was about 6% (4 haplotypes, haplogroups H, J, and U). Most of Y chromosomes in the Yakut population (87%) belonged to haplogroup N3 (HG16), delineated by the T-C substitution at the Tat locus. Chromosomes of haplogroup N3 displayed the presence of 19 microsatellite haplotypes, the most frequent of which encompassed 54% chromosomes of this haplogroup. Median network of haplogroup N3 in Yakuts demonstrated distinct "starlike phylogeny". Male lineages of Yakuts were shown to be closest to those of Eastern Evenks.  相似文献   

16.
17.
The mtDNA variation has been studied in representatives of the Russkoe Ust’e (n = 30), Kolyma (n = 31), and Markovo (n = 26) ethnic subgroups originating from Russian military men, hunters, and fishers who married local Yukaghir women and settled at the Arctic Ocean coast and on the Anadyr’ River more than 350 years ago. The mtDNA haplotypes characteristic of indigenous Siberian peoples have been demonstrated to form the basis of the mitochondrial gene pool of Russian old settlers of the region. Only one of 30 identified haplotypes belonging to 11 haplogroups (H2a) is characteristic of European populations. The C and D haplogroups are the most diverse. The analysis has revealed the characteristics of the population structure of the Russian old settlers and allowed them to be interpreted in terms of recent historical and environmental processes.  相似文献   

18.
To study the mitochondrial gene pool structure in Yakuts, polymorphism of mtDNA hypervariable segment I (16,024–16,390) was analyzed in 191 people sampled from the indigenous population of the Sakha Republic. In total, 67 haplotypes of 14 haplogroups were detected. Most (91.6%) haplotypes belonged to haplogroups A, B, C, D, F, G, M*, and Y, which are specific for East Eurasian ethnic groups; 8.4% haplotypes represented Caucasian haplogroups H, HV1, J, T, U, and W. A high frequency of mtDNA types belonging to Asian supercluster M was peculiar for Yakuts: mtDNA types belonging to haplogroup C, D, or G and undifferentiated mtDNA types of haplogroup M (M*) accounted for 81% of all haplotypes. The highest diversity was observed for haplogroups C and D, which comprised respectively 22 (44%) and 18 (30%) haplotypes. Yakuts showed the lowest genetic diversity (H = 0.964) among all Turkic ethnic groups. Phylogenetic analysis testified to common genetic substrate of Yakuts, Mongols, and Central Asian (Kazakh, Kyrgyz, Uighur) populations. Yakuts proved to share 21 (55.5%) mtDNA haplotypes with the Central Asian ethnic groups and Mongols. Comparisons with modern Paleoasian populations (Chukcha, Itelmen, Koryaks) revealed three (8.9%) haplotypes common for Yakuts and Koryaks. The results of mtDNA analysis disagree with the hypothesis of an appreciable Paleoasian contribution to the modern Yakut gene pool.  相似文献   

19.
Previous studies have investigated the human population history of eastern North America by examining mitochondrial DNA (mtDNA) variation among Native Americans, but these studies could only reconstruct maternal population history. To evaluate similarities and differences in the maternal and paternal population histories of this region, we obtained DNA samples from 605 individuals, representing 16 indigenous populations. After amplifying the amelogenin locus to identify males, we genotyped 8 binary polymorphisms and 10 microsatellites in the male-specific region of the Y chromosome. This analysis identified 6 haplogroups and 175 haplotypes. We found that sociocultural factors have played a more important role than language or geography in shaping the patterns of Y chromosome variation in eastern North America. Comparisons with previous mtDNA studies of the same samples demonstrate that male and female demographic histories differ substantially in this region. Postmarital residence patterns have strongly influenced genetic structure, with patrilocal and matrilocal populations showing different patterns of male and female gene flow. European contact also had a significant but sex-specific impact due to a high level of male-mediated European admixture. Finally, this study addresses long-standing questions about the history of Iroquoian populations by suggesting that the ancestral Iroquoian population lived in southeastern North America.  相似文献   

20.
Aim We analysed the population genetics of the brown hare (Lepus europaeus) in order to test the hypothesis that this species migrated into central Europe from a number of late glacial refugia, including some in Asia Minor. Location Thirty‐three localities in Greece, Bulgaria, Italy, Croatia, Serbia, Poland, Switzerland, Austria, France, Germany, the Netherlands, Spain, the United Kingdom, Turkey and Israel. Methods In total, 926 brown hares were analysed for mitochondrial DNA (mtDNA) variation by restriction fragment length polymorphism (RFLP) performed on polymerase chain reaction‐amplified products spanning cytochrome b (cyt b)/control region (CR), cytochrome oxidase I (COI) and 12S–16S rRNA. In addition, sequence analysis of the mtDNA CR‐I region was performed on 69 individuals, and the data were compared with 137 mtDNA CR‐I sequences retrieved from GenBank. Results The 112 haplotypes detected were partitioned into five phylogeographically well‐defined major haplogroups, namely the ‘south‐eastern European type haplogroup’ (SEEh), ‘Anatolian/Middle Eastern type haplogroup’ (AMh), ‘European type haplogroup, subgroup A’ (EUh‐A), ‘European type haplogroup, subgroup B’ (EUh‐B) and ‘Intermediate haplogroup’ (INTERh). Sequence data retrieved from GenBank were consistent with the haplogroups determined in this study. In Bulgaria and north‐eastern Greece numerous haplotypes of all five haplogroups were present, forming a large overlap zone. Main conclusions The mtDNA results allow us to infer post‐glacial colonization of large parts of Europe from a late glacial/early Holocene source population in the central or south‐central Balkans. The presence of Anatolian/Middle Eastern haplotypes in the large overlap zone in Bulgaria and north‐eastern Greece reveals gene flow from Anatolia to Europe across the late Pleistocene Bosporus land‐bridge. Although various restocking operations could be partly responsible for the presence of unexpected haplotypes in certain areas, we nevertheless trace a strong phylogeographic signal throughout all regions under study. Throughout Europe, mtDNA results indicate that brown hares are not separated into discernable phyletic groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号