首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   420篇
  免费   45篇
  国内免费   1篇
  2021年   5篇
  2019年   4篇
  2018年   4篇
  2016年   5篇
  2015年   9篇
  2014年   18篇
  2013年   24篇
  2012年   23篇
  2011年   20篇
  2010年   12篇
  2009年   8篇
  2008年   17篇
  2007年   19篇
  2006年   13篇
  2005年   17篇
  2004年   21篇
  2003年   17篇
  2002年   18篇
  2001年   21篇
  2000年   28篇
  1999年   19篇
  1998年   11篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   5篇
  1992年   9篇
  1991年   11篇
  1990年   6篇
  1989年   9篇
  1988年   7篇
  1987年   7篇
  1986年   8篇
  1985年   7篇
  1984年   2篇
  1983年   4篇
  1982年   6篇
  1981年   3篇
  1979年   3篇
  1978年   5篇
  1977年   3篇
  1975年   6篇
  1974年   2篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
  1970年   1篇
  1965年   1篇
  1942年   1篇
排序方式: 共有466条查询结果,搜索用时 15 毫秒
21.
22.
木棉(Bombax malabaricum DC.)是一种可以生长在干热河谷的落叶大乔木.河谷内,木棉成年树木生长良好,有大量结实,而其周围却很少有种苗出现.通过室内条件研究木棉种子的物理特性和萌发的生物学特性,可以了解该物种种子萌发对环境因子的需求,为探讨木棉在干热河谷内自然种群更新难和萌发阶段对这一特殊生境的适应性提供理论依据.经测定,木棉种子千粒重为39.08 g,比同科的其它物种要轻.四唑(TTC,1.O%)染色测定种子生活力的结果表明有生活力种子占64.0%.种皮对吸胀无障碍,种子在25℃吸胀2d时就开始萌发.检测了环境因子对种子萌发和幼苗生长的影响,结果表明,种子萌发对光照不敏感而且对温度有较广的适应性,15-35℃都可以萌发,25-35℃萌发率无显著差异,但随温度升高,萌发速率加快,幼苗长势增加;萌发过程对渗透胁迫敏感,聚乙二醇(PEG)浓度为0.10 g/mL时萌发率较对照显著下降,0.15 g/mL时种子就不能萌发;室温吸胀24h的种子对热激敏感,42℃热激2h后萌发率就已经显著下降;室湿下水杨酸(SA,1,10,100 mg/L)浸种24h,没有提高种子在萌发期间对干旱和热激的抗性.可见,高温和干旱是限制木棉种子成功萌发的关键因子,然而发现,温度较高时水分过大也会造成萌发后幼苗的死亡.  相似文献   
23.
Heterodisulfide reductase (Hdr) is a key enzyme in the energy metabolism of methanogenic archaea. The enzyme catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) to the thiol coenzymes M (CoM-SH) and B (CoB-SH). Cleavage of CoM-S-S-CoB at an unusual FeS cluster reveals unique substrate chemistry. The cluster is fixed by cysteines of two cysteine-rich CCG domain sequence motifs (CX31–39CCX35–36CXXC) of subunit HdrB of the Methanothermobacter marburgensis HdrABC complex. We report on Q-band (34 GHz) 57Fe electron-nuclear double resonance (ENDOR) spectroscopic measurements on the oxidized form of the cluster found in HdrABC and in two other CCG-domain-containing proteins, recombinant HdrB of Hdr from M. marburgensis and recombinant SdhE of succinate: quinone reductase from Sulfolobus solfataricus P2. The spectra at 34 GHz show clearly improved resolution arising from the absence of proton resonances and polarization effects. Systematic spectral simulations of 34 GHz data combined with previous 9 GHz data allowed the unambiguous assignment of four 57Fe hyperfine couplings to the cluster in all three proteins. 13C Mims ENDOR spectra of labelled CoM-SH were consistent with the attachment of the substrate to the cluster in HdrABC, whereas in the other two proteins no substrate is present. 57Fe resonances in all three systems revealed unusually large 57Fe ENDOR hyperfine splitting as compared to known systems. The results infer that the cluster’s unique magnetic properties arise from the CCG binding motif.  相似文献   
24.
Forests provide important ecological, economic, and social services, and recent interest has emerged in the potential for using residue from timber harvest as a source of renewable woody bioenergy. The long‐term consequences of such intensive harvest are unclear, particularly as forests face novel climatic conditions over the next century. We used a simulation model to project the long‐term effects of management and climate change on above‐ and belowground forest carbon storage in a watershed in northwestern Oregon. The multi‐ownership watershed has a diverse range of current management practices, including little‐to‐no harvesting on federal lands, short‐rotation clear‐cutting on industrial land, and a mix of practices on private nonindustrial land. We simulated multiple management scenarios, varying the rate and intensity of harvest, combined with projections of climate change. Our simulations project a wide range of total ecosystem carbon storage with varying harvest rate, ranging from a 45% increase to a 16% decrease in carbon compared to current levels. Increasing the intensity of harvest for bioenergy caused a 2–3% decrease in ecosystem carbon relative to conventional harvest practices. Soil carbon was relatively insensitive to harvest rotation and intensity, and accumulated slowly regardless of harvest regime. Climate change reduced carbon accumulation in soil and detrital pools due to increasing heterotrophic respiration, and had small but variable effects on aboveground live carbon and total ecosystem carbon. Overall, we conclude that current levels of ecosystem carbon storage are maintained in part due to substantial portions of the landscape (federal and some private lands) remaining unharvested or lightly managed. Increasing the intensity of harvest for bioenergy on currently harvested land, however, led to a relatively small reduction in the ability of forests to store carbon. Climate change is unlikely to substantially alter carbon storage in these forests, absent shifts in disturbance regimes.  相似文献   
25.
Powdery mildew (Golovinomyces cichoracearum), one of the most prolific obligate biotrophic fungal pathogens worldwide, infects its host by penetrating the plant cell wall without activating the plant's innate immune system. The Arabidopsis mutant powdery mildew resistant 5 (pmr5) carries a mutation in a putative pectin acetyltransferase gene that confers enhanced resistance to powdery mildew. Here, we show that heterologously expressed PMR5 protein transfers acetyl groups from [14C]‐acetyl‐CoA to oligogalacturonides. Through site‐directed mutagenesis, we show that three amino acids within a highly conserved esterase domain in putative PMR5 orthologs are necessary for PMR5 function. A suppressor screen of mutagenized pmr5 seed selecting for increased powdery mildew susceptibility identified two previously characterized genes affecting the acetylation of plant cell wall polysaccharides, RWA2 and TBR. The rwa2 and tbr mutants also suppress powdery mildew disease resistance in pmr6, a mutant defective in a putative pectate lyase gene. Cell wall analysis of pmr5 and pmr6, and their rwa2 and tbr suppressor mutants, demonstrates minor shifts in cellulose and pectin composition. In direct contrast to their increased powdery mildew resistance, both pmr5 and pmr6 plants are highly susceptibile to multiple strains of the generalist necrotroph Botrytis cinerea, and have decreased camalexin production upon infection with B. cinerea. These results illustrate that cell wall composition is intimately connected to fungal disease resistance and outline a potential route for engineering powdery mildew resistance into susceptible crop species.  相似文献   
26.
27.
The plastid-encoded psaJ gene encodes a hydrophobic low-molecular-mass subunit of photosystem I (PSI) containing one transmembrane helix. Homoplastomic transformants with an inactivated psaJ gene were devoid of PSI-J protein. The mutant plants were slightly smaller and paler than wild-type because of a 13% reduction in chlorophyll content per leaf area caused by an approximately 20% reduction in PSI. The amount of the peripheral antenna proteins, Lhca2 and Lhca3, was decreased to the same level as the core subunits, but Lhca1 and Lhca4 were present in relative excess. The functional size of the PSI antenna was not affected, suggesting that PSI-J is not involved in binding of light-harvesting complex I. The specific PSI activity, measured as NADP(+) photoreduction in vitro, revealed a 55% reduction in electron transport through PSI in the mutant. No significant difference in the second-order rate constant for electron transfer from reduced plastocyanin to oxidized P700 was observed in the absence of PSI-J. Instead, a large fraction of PSI was found to be inactive. Immunoblotting analysis revealed a secondary loss of the luminal PSI-N subunit in PSI particles devoid of PSI-J. Presumably PSI-J affects the conformation of PSI-F, which in turn affects the binding of PSI-N. This together renders a fraction of the PSI particles inactive. Thus, PSI-J is an important subunit that, together with PSI-F and PSI-N, is required for formation of the plastocyanin-binding domain of PSI. PSI-J is furthermore important for stability or assembly of the PSI complex.  相似文献   
28.
Intracellular membrane fusion requires SNARE proteins found on the vesicle and target membranes. SNAREs associate by formation of a parallel four-helix bundle, and it has been suggested that formation of this complex promotes membrane fusion. The membrane proximal region of the cytoplasmic domain of the SNARE syntaxin 1A, designated H3, contributes one of the four helices to the SNARE complex. In the crystal structure of syntaxin 1A H3, four molecules associate as a homotetramer composed of two pairs of parallel helices that are anti-parallel to each other. The H3 oligomer observed in the crystals is also found in solution, as assessed by gel filtration and chemical cross-linking studies. The crystal structure reveals that the highly conserved Phe-216 packs against conserved Gln-226 residues present on the anti-parallel pair of helices. Modeling indicates that Phe-216 prevents parallel tetramer formation. Mutation of Phe-216 to Leu appears to allow formation of parallel tetramers, whereas mutation to Ala destabilizes the protein. These results indicate that Phe-216 has a role in preventing formation of stable parallel helical bundles, thus favoring the interaction of the H3 region of syntaxin 1a with other proteins involved in membrane fusion.  相似文献   
29.
We report a structural characterization by electron microscopy of green plant photosystem I solubilized by the mild detergent n-dodecyl-alpha-D-maltoside. It is shown by immunoblotting that the isolated complexes contain all photosystem I core proteins and all peripheral light-harvesting proteins. The electron microscopic analysis is based on a large data set of 14 000 negatively stained single-particle projections and reveals that most of the complexes are oval-shaped monomers. The monomers have a tendency to associate into artificial dimers, trimers, and tetramers in which the monomers are oppositely oriented. Classification of the dimeric complexes suggests that some of the monomers lack a part of the peripheral antenna. On the basis of a comparison with projections from trimeric photosystem I complexes from cyanobacteria, we conclude that light-harvesting complex I only binds to the core complex at the side of the photosystem I F/J subunits and does not cause structural hindrances for the type of trimerization observed in cyanobacterial photosystem I.  相似文献   
30.
With the aim to specifically study the molecular mechanisms behind photoinhibition of photosystem I, stacked spinach (Spinacia oleracea) thylakoids were irradiated at 4 degrees C with far-red light (>715 nm) exciting photosystem I, but not photosystem II. Selective excitation of photosystem I by far-red light for 130 min resulted in a 40% inactivation of photosystem I. It is surprising that this treatment also caused up to 90% damage to photosystem II. This suggests that active oxygen produced at the reducing side of photosystem I is highly damaging to photosystem II. Only a small pool of the D1-protein was degraded. However, most of the D1-protein was modified to a slightly higher molecular mass, indicative of a damage-induced conformational change. The far-red illumination was also performed using destacked and randomized thylakoids in which the distance between the photosystems is shorter. Upon 130 min of illumination, photosystem I showed an approximate 40% inactivation as in stacked thylakoids. In contrast, photosystem II only showed 40% inactivation in destacked and randomized thylakoids, less than one-half of the inactivation observed using stacked thylakoids. In accordance with this, photosystem II, but not photosystem I is more protected from photoinhibition in destacked thylakoids. Addition of active oxygen scavengers during the far-red photosystem I illumination demonstrated superoxide to be a major cause of damage to photosystem I, whereas photosystem II was damaged mainly by superoxide and hydrogen peroxide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号