首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   17篇
  2023年   1篇
  2022年   2篇
  2021年   14篇
  2020年   3篇
  2019年   9篇
  2018年   4篇
  2017年   6篇
  2016年   10篇
  2015年   11篇
  2014年   10篇
  2013年   13篇
  2012年   13篇
  2011年   18篇
  2010年   15篇
  2009年   15篇
  2008年   16篇
  2007年   9篇
  2006年   17篇
  2005年   21篇
  2004年   12篇
  2003年   10篇
  2002年   10篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有266条查询结果,搜索用时 31 毫秒
21.
Oikawa S  Hikosaka K  Hirose T 《Oecologia》2005,143(4):517-526
We studied leaf area and nitrogen dynamics in the canopy of stands of an annual herb Xanthium canadense, grown at a high (HN)- and a low-nitorgen (LN) availability. Standing leaf area increased continuously through the vegetative growth period in the LN stand, or leveled off in the later stage in the HN stand. When scaled against standing leaf area, both production and loss rates of leaf area increased but with different patterns: the production rate was retarded, while the loss rate was accelerated, implying an upper limit of standing leaf area of the canopy. The rate of leaf-area production was higher in the HN than in the LN stand, which was caused by the higher rate of leaf production per standing leaf area as well as the greater standing leaf area in the HN stand. Although the rate of leaf-area loss was higher in the HN than in the LN stand, it was not significantly different between the two stands when compared at a common standing leaf area, suggesting involvement of light climate in determination of the leaf-loss rate. On the other hand, the rate of leaf-area loss was positively correlated with nitrogen demand for leaf area development across the two stands, suggesting that leaf loss was caused by retranslocation of nitrogen for construction of new leaves. A simple simulation model of leaf and nitrogen dynamics in the canopy showed that, at steady state, where the rate of leaf-area loss becomes equal to the production rate, the standing leaf area was still greater in the HN than in the LN stand. Similarly, when the uptake and loss of nitrogen are equilibrated, the standing nitrogen was greater in the HN than in the LN stand. These results suggest that leaf-area production is strongly controlled by nitrogen availability, while both nitrogen and light climate determine leaf-loss rates in the canopy.  相似文献   
22.
Assessing the generality of global leaf trait relationships   总被引:14,自引:0,他引:14  
Global-scale quantification of relationships between plant traits gives insight into the evolution of the world's vegetation, and is crucial for parameterizing vegetation-climate models. A database was compiled, comprising data for hundreds to thousands of species for the core 'leaf economics' traits leaf lifespan, leaf mass per area, photosynthetic capacity, dark respiration, and leaf nitrogen and phosphorus concentrations, as well as leaf potassium, photosynthetic N-use efficiency (PNUE), and leaf N : P ratio. While mean trait values differed between plant functional types, the range found within groups was often larger than differences among them. Future vegetation-climate models could incorporate this knowledge. The core leaf traits were intercorrelated, both globally and within plant functional types, forming a 'leaf economics spectrum'. While these relationships are very general, they are not universal, as significant heterogeneity exists between relationships fitted to individual sites. Much, but not all, heterogeneity can be explained by variation in sample size alone. PNUE can also be considered as part of this trait spectrum, whereas leaf K and N : P ratios are only loosely related.  相似文献   
23.
Staphylococcus warneri ISK-1 produces a lantibiotic, nukacin ISK-1. The nukacin ISK-1 gene cluster consists of at least six genes, nukA, -M, -T, -F, -E, and -G, and two open reading frames, ORF1 and ORF7 (designated nukH). Sequence comparisons suggested that NukF, -E, -G, and -H contribute to immunity to nukacin ISK-1. We investigated the immunity levels of recombinant Lactococcus lactis expressing nukFEG and nukH against nukacin ISK-1. The co-expression of nukFEG and nukH resulted in a high degree of immunity. The expression of either nukFEG or nukH conferred partial immunity against nukacin ISK-1. These results suggest that NukH contributes cooperatively to self-protection with NukFEG. The nukacin ISK-1 immunity system might function against another lantibiotic, lacticin 481. Western blot analysis showed that NukH expressed in Staphylococcus carnosus was localized in the membrane. Peptide release/bind assays indicated that the recombinant L. lactis expressing nukH interacted with nukacin ISK-1 and lacticin 481 but not with nisin A. These findings suggest that NukH contributes cooperatively to host immunity as a novel type of lantibiotic-binding immunity protein with NukFEG.  相似文献   
24.
Elevated CO2 enhances photosynthesis and growth of plants, but the enhancement is strongly influenced by the availability of nitrogen. In this article, we summarise our studies on plant responses to elevated CO2. The photosynthetic capacity of leaves depends not only on leaf nitrogen content but also on nitrogen partitioning within a leaf. In Polygonum cuspidatum, nitrogen partitioning among the photosynthetic components was not influenced by elevated CO2 but changed between seasons. Since the alteration in nitrogen partitioning resulted in different CO2-dependence of photosynthetic rates, enhancement of photosynthesis by elevated CO2 was greater in autumn than in summer. Leaf mass per unit area (LMA) increases in plants grown at elevated CO2. This increase was considered to have resulted from the accumulation of carbohydrates not used for plant growth. With a sensitive analysis of a growth model, however, we suggested that the increase in LMA is advantageous for growth at elevated CO2 by compensating for the reduction in leaf nitrogen concentration per unit mass. Enhancement of reproductive yield by elevated CO2 is often smaller than that expected from vegetative growth. In Xanthium canadense, elevated CO2 did not increase seed production, though the vegetative growth increased by 53%. As nitrogen concentration of seeds remained constant at different CO2 levels, we suggest that the availability of nitrogen limited seed production at elevated CO2 levels. We found that leaf area development of plant canopy was strongly constrained by the availability of nitrogen rather than by CO2. In a rice field cultivated at free-air CO2 enrichment, the leaf area index (LAI) increased with an increase in nitrogen availability but did not change with CO2 elevation. We determined optimal LAI to maximise canopy photosynthesis and demonstrated that enhancement of canopy photosynthesis by elevated CO2 was larger at high than at low nitrogen availability. We also studied competitive asymmetry among individuals in an even-aged, monospecific stand at elevated CO2. Light acquisition (acquired light per unit aboveground mass) and utilisation (photosynthesis per unit acquired light) were calculated for each individual in the stand. Elevated CO2 enhanced photosynthesis and growth of tall dominants, which reduced the light availability for shorter subordinates and consequently increased size inequality in the stand.  相似文献   
25.
26.
Leaf lifespan in response to resource availability has been documented in many studies, but it still remains uncertain what determines the timing of leaf shedding. Here, we evaluate the lifetime carbon (C) balance of a leaf in a canopy as influenced by nitrogen (N) availability. Stands of Xanthium canadense were established with high-nitrogen (HN) and low-nitrogen (LN) treatments and temporal changes of C gain of individual leaves were investigated with a canopy photosynthesis model. Daily C gain of a leaf was maximal early in its development and subsequently declined. Daily C gain at shedding was nearly zero in HN, while it was still positive in LN. Sensitivity analyses showed that the decline in the daily C gain resulted primarily from the reduction in light level in HN and by the reduction in leaf N in LN. Smaller leaf size in LN than in HN led to higher light levels in the canopy, which helped leaves of the LN stand maintain for a longer period. These results suggest that the mechanism by which leaf lifespan is determined changes depending on the availability of the resource that is most limiting to plant growth.  相似文献   
27.
An auxin analog, 2,4-D, stimulates the activity of endo-1,4-beta-glucanase (EGase) in rice (Oryza sativa L.). The auxin-induced activity from three protein fractions was purified to homogeneity from primary root tissues (based on SDS-PAGE and isoelectric focusing after Coomassie brilliant blue staining). Amino acid sequencing indicated that the 20 N-terminal amino acid sequence of the three proteins was identical, suggesting that these proteins may be cognates of one EGase gene. An internal amino acid sequence of the the rice EGase (LVGGYYDAGDNVK) revealed that this enzyme belongs to glycosyl hydrolase family 9 (GHF9). The major isoform of this rice GHF9 [molecular weight based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS): 51,216, isoelectric point (pI): 5.5] specifically hydrolyzed 1,4-beta-glycosyl linkages of carboxymethyl (CM)-cellulose, phosphoric acid-swollen cellulose, 1,3-1,4-beta-glucan, arabinoxylan, xylan, glucomannan, cellooligosaccharides [with a degree of polymerization (DP) >3] and 1,4-beta-xylohexaose, indicating a broader substrate range compared with those of other characterized GHF9 enzymes or EGases from higher plants. Hydrolytic products of two major hemicellulosic polysaccharides in type II cell walls treated with the purified enzyme were profiled using high-performance anion exchange chromatography (HPAEC). The results suggested that endolytic attack by rice EGase is not restricted to either the cellulose-like domain of 1,3-1,4-beta-glucan or the unsubstituted 1,4-beta-xylosyl backbone of arabinoxylan, but results in the release of smaller oligosaccharides (DP <6) from graminaceous hemicelluloses. The comparatively broader substrate range of this EGase with respect to beta-1,4-glycan backbones (glucose and xylose) may partly reflect different roles of gramineous and non-gramineous GHF9 enzymes.  相似文献   
28.
We investigated seasonal dynamics of fish in tidepools on tidal mudflats in the Tama River estuary, Japan. A total of 1,156 individuals of 8 gobiid species were collected from May 2008 to April 2009. The total abundance of fishes peaked in September and October. Of three dominant species, Acanthogobius flavimanus was found only in spring and early summer, whereas Pseudogobius masago and Mugilogobius abei occurred in all seasons. The utilization patterns of tidepools with/without cobbles were different among the latter two species.  相似文献   
29.
Abstract. We studied canopy structure, shoot architecture and light harvesting efficiencies of the species (photon flux captured per unit above‐ground plant mass) in a series of exclosures of different age (up to 4.5 yr) in originally heavily grazed grassland in N Japan.Vegetation height and Leaf Area Index (LAI) increased in the series and Zoysia japonica, the dominant in the beginning, was replaced by the much taller Miscanthus sinensis. We showed how this displacement in dominance can be explained by inherent constraints on the above‐ground architecture of these two species. In all stands light capture of plants increased with their above‐ground biomass but taller species were not necessarily more efficient in light harvesting. Some subordinate species grew disproportionally large leaf areas and persisted in the shady undergrowth. Some other species first grew taller and managed to stay in the better‐lit parts of the canopy, but ultimately failed to match the height growth of their neighbours in this early successional series. Their light harvesting efficiencies declined and this probably led to their exclusion. By contrast, species that maintained their position high in the canopy managed to persist in the vegetation despite their relatively low light harvesting efficiencies. In the tallest stands ‘later successional’ species had higher light harvesting efficiencies for the same plant height than ‘early successional’ species which was mostly the result of the greater area to mass ratio (specific leaf area, SLA) of their leaves. This shows how plant stature, plasticity in above‐ground biomass partitioning, and architectural constraints determine the ability of plants to efficiently capture light, which helps to explain species replacement in this early successional series.  相似文献   
30.
Early life history of a seahorse, Hippocampus mohnikei, in Tokyo Bay, Japan   总被引:1,自引:1,他引:0  
The early morphological development, seasonal and spatial occurrence patterns, and food habits of a seahorse, Hippocampus mohnikei, in offshore waters of Tokyo Bay, central Japan, were studied on the basis of 206 juvenile and young specimens (6.0–65.3 mm TL) collected between August 1995 and January 1999. All the specimens were collected within the period from May to January, inclusive, each year. In the least developed specimen (6.0 mm TL), the number of dorsal, anal, and pectoral fin rays had attained the adult complement, whereas the minute caudal fin, consisting of two rays, was present in juveniles of 6.0–26.4 mm TL. Hippocampus mohnikei≧35 mm TL, being larger than settlement size (ca. 30 mm TL), had very low gut fullness index values (GFI = 0, >70% of specimens), whereas those of 15–29 mm TL had higher values (GFI = 2–4, >80% of specimens). In addition, larger individuals selectively fed on larger planktonic animals (species of Brachyura), which occurred naturally at low densities, although smaller food items, such as Oithona davisae and Penilia avirostris, occurred abundantly, being consumed by smaller H. mohnikei individuals (15–34 mm TL). These results indicated that food availability for H. mohnikei in offshore waters of Tokyo Bay is significant for individuals larger than settlement size, because their food preference would shift from smaller food items to larger food items, which would be scarce in their environments. Received: January 12, 2001 / Revised: May 13, 2001 / Accepted: June 14, 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号