首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12330篇
  免费   1291篇
  国内免费   7篇
  2021年   282篇
  2020年   187篇
  2019年   216篇
  2018年   238篇
  2017年   207篇
  2016年   295篇
  2015年   503篇
  2014年   529篇
  2013年   655篇
  2012年   762篇
  2011年   772篇
  2010年   465篇
  2009年   411篇
  2008年   558篇
  2007年   546篇
  2006年   506篇
  2005年   488篇
  2004年   460篇
  2003年   398篇
  2002年   452篇
  2001年   236篇
  2000年   202篇
  1999年   212篇
  1998年   151篇
  1997年   82篇
  1996年   93篇
  1995年   118篇
  1994年   89篇
  1993年   114篇
  1992年   178篇
  1991年   146篇
  1990年   167篇
  1989年   138篇
  1988年   147篇
  1987年   146篇
  1986年   122篇
  1985年   126篇
  1984年   117篇
  1983年   96篇
  1982年   119篇
  1981年   117篇
  1980年   109篇
  1979年   118篇
  1978年   130篇
  1977年   96篇
  1976年   86篇
  1975年   89篇
  1973年   78篇
  1972年   77篇
  1971年   67篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
991.
We have previously shown that PGE(2) and PGI(2) induce recovery of transepithelial resistance (TER) in ischemia-injured porcine ileal mucosa, associated with initial increases in Cl(-) secretion. We believe that the latter generates an osmotic gradient that stimulates resealing of tight junctions. Because of evidence implicating phosphatidylinositol 3-kinase (PI3K) in regulating tight junction assembly, we postulated that this signaling pathway is involved in PG-induced mucosal recovery. Porcine ileum was subjected to 45 min of ischemia, after which TER was monitored for a 180-min recovery period. Endogenous PG production was inhibited with indomethacin (5 microM). PGE(2) (1 microM) and PGI(2) (1 microM) stimulated recovery of TER, which was inhibited by serosal application of the osmotic agent urea (300 mosmol/kgH(2)O). The PI3K inhibitor wortmannin (10 nM) blocked recovery of TER in response to PGs or mucosal urea. Immunofluorescence imaging of recovering epithelium revealed that PGs restored occludin and zonula occludens-1 distribution to interepithelial junctions, and this pattern was disrupted by pretreatment with wortmannin. These experiments suggest that PGs stimulate recovery of paracellular resistance via a mechanism involving transepithelial osmotic gradients and PI3K-dependent restoration of tight junction protein distribution.  相似文献   
992.
The cause of the urinary alcohol level (UAL) cycle in rats fed ethanol at a constant rate has been shown to involve the hypothalamic-pituitary thyroid axis. Because the effect of thyroid hormone on the metabolic rate is augmented by catecholamines, the role of catecholamines was investigated by using the intragastric ethanol feeding model of alcoholic liver disease in which the UAL cycles over a 6- to 10-day period. The diet was supplemented with ephedrine and caffeine to test the hypothesis that the UAL cycle involves catecholamines. The UAL was followed to see whether the cycle was ablated by catecholamine supplements. Ethanol fed alone increased the blood levels of catecholamines significantly more than did ephedrine fed alone. However, blood catecholamine levels were significantly higher when ethanol was fed with ephedrine compared with the sum of ethanol and ephedrine fed alone. This indicated that the effect of ethanol and ephedrine were synergistic. The UAL cycle was completely ablated in the ethanol + ephedrine-fed rats. These rats tolerated a much higher dose of ethanol, indicating that they metabolized alcohol faster due to an increase in metabolic rate caused by ephedrine. In the ethanol + ephedrine-fed rats the liver pathology included significantly higher alanine amino transferase (ALT) in the blood and centrilobular ischemic necrosis in the liver. Necrosis was not present in the rats fed ephedrine alone. In conclusion, catecholamine supplements prevented the UAL cycle by increasing the metabolic rate to the point at which fluctuations in the metabolic rate caused by alcohol were prevented.  相似文献   
993.
Mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MAPKAPK2) mediates multiple p38 MAPK-dependent inflammatory responses. To define the signal transduction pathways activated by MAPKAPK2, we identified potential MAPKAPK2 substrates by using a functional proteomic approach consisting of in vitro phosphorylation of neutrophil lysate by active recombinant MAPKAPK2, protein separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and phosphoprotein identification by peptide mass fingerprinting with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and protein database analysis. One of the eight candidate MAPKAPK2 substrates identified was the adaptor protein, 14-3-3zeta. We confirmed that MAPKAPK2 interacted with and phosphorylated 14-3-3zeta in vitro and in HEK293 cells. The chemoattractant formyl-methionyl-leucyl-phenylalanine (fMLP) stimulated p38-MAPK-dependent phosphorylation of 14-3-3 proteins in human neutrophils. Mutation analysis showed that MAPKAPK2 phosphorylated 14-3-3zeta at Ser-58. Computational modeling and calculation of theoretical binding energies predicted that both phosphorylation at Ser-58 and mutation of Ser-58 to Asp (S58D) compromised the ability of 14-3-3zeta to dimerize. Experimentally, S58D mutation significantly impaired both 14-3-3zeta dimerization and binding to Raf-1. These data suggest that MAPKAPK2-mediated phosphorylation regulates 14-3-3zeta functions, and this MAPKAPK2 activity may represent a novel pathway mediating p38 MAPK-dependent inflammation.  相似文献   
994.
995.
996.
Arsenic exists ubiquitously in our environment and various forms of arsenic circulate in air, water, soil and living organisms. Since arsenic compounds have shown to exert their toxicity chiefly by generating reactive oxygen species, we have evaluated the effect of antioxidants ascorbic acid and alpha-tocopherol on lipid peroxidation, antioxidants and mitochondrial enzymes in liver and kidney of arsenic exposed rats. A significant increase in the level of lipid peroxidation and decrease in the levels of antioxidants and in the activities of mitochondrial enzymes were observed in arsenic intoxicated rats. Co-administration of arsenic treated rats with ascorbic acid and alpha-tocopherol showed significant reduction in the level of lipid peroxidation and elevation in the levels of ascorbic acid, alpha-tocopherol, glutathione and total sulfhydryls and in the activities of isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, NADH-dehydrogenase and cytochrome c oxidase. From our results, we conclude that ascorbic acid and alpha-tocopherol alleviate arsenic- induced alterations in mitochondria.  相似文献   
997.
A family of nine Salmonella typhimurium type III secretion effectors with a conserved amino-terminus have been defined. Three family members (SifA, SifB and SseJ) have previously been demonstrated to localize to the Salmonella-containing vacuole and to Salmonella-induced filaments. In contrast, we demonstrate that two other family members, SspH2 and SseI, co-localized with the polymerizing actin cytoskeleton. These proteins also interacted with the mammalian actin cross-linking protein filamin in the yeast two-hybrid assay through their highly conserved amino-terminal domains. This amino-terminus was sufficient to direct localization to the polymerizing actin cytoskeleton, suggesting that the interaction with filamin is important for this subcellular localization. In addition, SspH2 co-localized with vacuole-associated actin polymerizations (VAP) induced by intracellular bacteria through the Salmonella pathogenicity island (SPI)-2 type III secretion system (TTSS). SspH2 interacted with the actin-binding protein profilin in the yeast two-hybrid assay and by affinity chromatography. This interaction was highly specific to SspH2 and was mediated by its carboxy-terminus. Furthermore, SspH2 inhibited the rate of actin polymerization in vitro, suggesting that it functions to reduce or remodel VAP. Strains with mutations in sspH2 and sseI retained the ability to form VAP. However, a third intracellular virulence factor, spvB, which ADP-ribosylates actin, strongly inhibited VAP formation in HeLa cells, suggesting a more subtle effect for SspH2 and SseI on the actin cytoskeleton.  相似文献   
998.
Melanophores, dark pigment cells from the frog Xenopus laevis, have the ability to change light absorbance upon stimulation by different biological agents. Hormone exposure (e.g. melatonin or alpha-melanocyte stimulating hormone) has been used here as a reversible stimulus to test a new compact microplate reading platform. As an application, the detection of the asthma drug formoterol in blood plasma samples is demonstrated. The present system utilizes a computer screen as a (programmable) large area light source, and a standard web camera as recording media enabling even kinetic microplate reading with a versatile and broadly available platform, which suffices to evaluate numerous bioassays. Especially in the context of point of care testing or self testing applications these possibilities become advantageous compared with highly dedicated comparatively expensive commercial systems.  相似文献   
999.
Cultured neuronal networks, which have the capacity to respond to a wide range of neuroactive compounds, have been suggested to be useful for both screening known analytes and unknown compounds for acute neuropharmacologic effects. Extracellular recording from cultured neuronal networks provides a means for extracting physiologically relevant activity, i.e. action potential firing, in a noninvasive manner conducive for long-term measurements. Previous work from our laboratory described prototype portable systems capable of high signal-to-noise extracellular recordings from cardiac myocytes. The present work describes a portable system tailored to monitoring neuronal extracellular potentials that readily incorporates standardized microelectrode arrays developed by and in use at the University of North Texas. This system utilizes low noise amplifier and filter boards, a two-stage thermal control system with integrated fluidics and a graphical user interface for data acquisition and control implemented on a personal computer. Wherever possible, off-the-shelf components have been utilized for system design and fabrication. During use with cultured neuronal networks, the system typically exhibits input referred noise levels of only 4-6 microVRMS, such that extracellular potentials exceeding 40 microV can be readily resolved. A flow rate of up to 1 ml/min was achieved while the cell recording chamber temperature was maintained within a range of 36-37 degrees C. To demonstrate the capability of this system to resolve small extracellular potentials, pharmacological experiments with cultured neuronal networks have been performed using ion channel blockers, tetrodotoxin and tityustoxin. The implications of the experiments for neurotoxin detection are discussed.  相似文献   
1000.
Previously, we have reported that insulin induces the expression of the dual-specificity tyrosine phosphatase Mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) and that this may represent a negative feedback mechanism to regulate insulin-stimulated MAP kinase activity. In this work, the mechanism of regulation of MKP-1 expression by insulin was examined, particularly the role of the MAP kinase superfamily. Inhibition of the ERK pathway attenuated insulin-stimulated MKP-1 mRNA expression. Expression of dominant negative molecules of the JNK pathway also abolished insulin-stimulated MKP-1 expression. However, inhibition of p38MAPK activity by SB202190 had no effect on insulin-stimulated MKP-1 induction. Simultaneous inhibition of the ERK and JNK pathways abolished the ability of insulin to stimulate MKP-1 expression, however, this combined inhibition was neither additive nor synergistic, suggesting these pathways converge to act on a common final effector. In conclusion, induction of MKP-1 mRNA expression in Hirc B cells by insulin requires activation of both the ERK and JNK pathways, but not p38MAPK.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号