首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   1篇
  2022年   1篇
  2021年   4篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   6篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   3篇
  2011年   4篇
  2010年   7篇
  2009年   5篇
  2008年   1篇
  2007年   6篇
  2006年   7篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   5篇
  2000年   4篇
  1999年   3篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1990年   2篇
  1989年   2篇
  1984年   1篇
  1980年   2篇
  1979年   1篇
  1972年   1篇
排序方式: 共有94条查询结果,搜索用时 171 毫秒
11.
Three analogs of alamethicin F50/5, labelled with the TOAC (='2,2,6,6-tetramethylpiperidin-1-oxyl-4-amino-4-carboxylic acid') spin label at positions 1 (Alm1), 8 (Alm8), and 16 (Alm16), resp., were studied by Electron-Spin-Resonance (ESR) and Pulsed Electron-Electron Double-Resonance (PELDOR) techniques in solvents of different polarity to investigate the self-assembly of amphipathic helical peptides in membrane-mimicking environments. In polar solvents, alamethicin forms homogeneous solutions. In the weakly polar chloroform/toluene 1 : 1 mixture, however, this peptide forms aggregates that are detectable at 293 K by ESR in liquid solution, as well as by PELDOR in frozen, glassy solution at 77 K. In liquid solution, free alamethicin molecules and their aggregates show rotational-mobility correlation times tau(r) of 0.87 and 5.9 ns, resp. Based on these values and analysis of dipole-dipole interactions of the TOAC labels in the aggregates, as determined by PELDOR, the average number N of alamethicin molecules in the aggregates is estimated to be less than nine. A distance-distribution function between spin labels in the supramolecular aggregate was obtained. This function exhibits two maxima: a broad one at a distance of 3.0 nm, and a wide one at a distance of ca. 7 nm. A molecular-dynamics (MD)-based model of the aggregate, consisting of two parallel tetramers, each composed of four molecules arranged in a 'head-to-tail' fashion, is proposed, accounting for the observed distances and their distribution.  相似文献   
12.
13.
Since available structures of native bc(1) complexes show a vacant Q(o)-site, occupancy by substrate and product must be investigated by kinetic and spectroscopic approaches. In this brief review, we discuss recent advances using these approaches that throw new light on the mechanism. The rate-limiting reaction is the first electron transfer after formation of the enzyme-substrate complex at the Q(o)-site. This is formed by binding of both ubiquinol (QH(2)) and the dissociated oxidized iron-sulfur protein (ISP(ox)). A binding constant of approximately 14 can be estimated from the displacement of E(m) or pK for quinone or ISP(ox), respectively. The binding likely involves a hydrogen bond, through which a proton-coupled electron transfer occurs. An enzyme-product complex is also formed at the Q(o)-site, in which ubiquinone (Q) hydrogen bonds with the reduced ISP (ISPH). The complex has been characterized in ESEEM experiments, which detect a histidine ligand, likely His-161 of ISP (in mitochondrial numbering), with a configuration similar to that in the complex of ISPH with stigmatellin. This special configuration is lost on binding of myxothiazol. Formation of the H-bond has been explored through the redox dependence of cytochrome c oxidation. We confirm previous reports of a decrease in E(m) of ISP on addition of myxothiazol, and show that this change can be detected kinetically. We suggest that the myxothiazol-induced change reflects loss of the interaction of ISPH with Q, and that the change in E(m) reflects a binding constant of approximately 4. We discuss previous data in the light of this new hypothesis, and suggest that the native structure might involve a less than optimal configuration that lowers the binding energy of complexes formed at the Q(o)-site so as to favor dissociation. We also discuss recent results from studies of the bypass reactions at the site, which lead to superoxide (SO) production under aerobic conditions, and provide additional information about intermediate states.  相似文献   
14.
15.
16.
Nitric oxide (NO) mediates fundamental physiological actions on skeletal muscle. The neuronal NO synthase isoform (NOS1) was reported to be located exclusively in the sarcolemma. Its loss from the sarcolemma was associated with development of Duchenne muscular dystrophy (DMD). However, new studies evidence that all three NOS isoforms-NOS1, NOS2, and NOS3-are co-expressed in the sarcoplasm both in normal and in DMD skeletal muscles. To address this controversy, we assayed NOS expression in DMD myofibers in situ cytophotometrically and found NOS expression in DMD myofibers up-regulated. These results support the hypothesis that NO deficiency with consequent muscle degeneration in DMD results from NO scavenging by superoxides rather than from reduced NOS expression.  相似文献   
17.
Selective (15)N isotope labeling of the cytochrome bo(3) ubiquinol oxidase from Escherichia coli with auxotrophs was used to characterize the hyperfine couplings with the side-chain nitrogens from residues R71, H98, and Q101 and peptide nitrogens from residues R71 and H98 around the semiquinone (SQ) at the high-affinity Q(H) site. The two-dimensional ESEEM (HYSCORE) data have directly identified N(ε) of R71 as an H-bond donor carrying the largest amount of unpaired spin density. In addition, weaker hyperfine couplings with the side-chain nitrogens from all residues around the SQ were determined. These hyperfine couplings reflect a distribution of the unpaired spin density over the protein in the SQ state of the Q(H) site and the strength of interaction with different residues. The approach was extended to the virtually inactive D75H mutant, where the intermediate SQ is also stabilized. We found that N(ε) of a histidine residue, presumably H75, carries most of the unpaired spin density instead of N(ε) of R71, as in wild-type bo(3). However, the detailed characterization of the weakly coupled (15)N atoms from selective labeling of R71 and Q101 in D75H was precluded by overlap of the (15)N lines with the much stronger ~1.6 MHz line from the quadrupole triplet of the strongly coupled (14)N(ε) atom of H75. Therefore, a reverse labeling approach, in which the enzyme was uniformly labeled except for selected amino acid types, was applied to probe the contribution of R71 and Q101 to the (15)N signals. Such labeling has shown only weak coupling with all nitrogens of R71 and Q101. We utilize density functional theory-based calculations to model the available information about (1)H, (15)N, and (13)C hyperfine couplings for the Q(H) site and to describe the protein-substrate interactions in both enzymes. In particular, we identify the factors responsible for the asymmetric distribution of the unpaired spin density and ponder the significance of this asymmetry to the quinone's electron transfer function.  相似文献   
18.
The concept of endothelium derived relaxing factor (EDRF) implies that nitric oxide (NO) generated by NO synthase in the endothelium diffuses to the underlying vascular smooth muscle cells (VSMC) modulating thereby vascular tone. VSMC were regarded as passive recipients of NO from endothelial cells. However, this paradigm of a paracrine function of NO became currently subject to considerable debate. To address this issue, we examined the localization of enzymes engaged in l-arginine-NO-cGMP signaling in the rat blood vessels. Employing multiple immunocytochemical labeling complemented with signal amplification, electron microscopy, Western blotting, and RT-PCR, we found that NO synthase was differentially expressed in blood vessels depending on the blood vessel type. Moreover, the expression pattern of NO synthase in VSMC showed striking parallels with arginase and soluble guanylyl cyclase. Our findings challenge the commonly accepted view that the expression of NO synthase is restricted to vascular endothelial cells and lends further support to an alternative mechanism, by which constitutive local NOS expression in VSMC may modulate vascular functions in an endothelium-independent manner. Moreover, the co-expression of enzymes engaged in l-arginine-NO-cGMP signaling (NO synthase, arginase, and soluble guanylyl cyclase) in VSMC is indicative of an autocrine fashion of NO signaling in the vasculature in addition to the paracrine role of NO generated in the endothelium.  相似文献   
19.
Inactivation of bacterial strains derived from E. coli B, which differ in the DNA-repair capacity (exc-, pol- and rec-) was investigated after far and near UV irradiation. The same strains were also used as hosts for UV-irradiated phage T7. The injuries caused in bacteria and phages by radiation with longer wavelengths were reparable with greater difficulty and only to a lesser extent by the investigated repair mechanisms. We suppose that near UV affects cell proteins and that, as a result of this damage, the DNA-repair systems may be inhibited.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号