首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   97篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   9篇
  2014年   6篇
  2013年   8篇
  2012年   7篇
  2011年   10篇
  2010年   7篇
  2009年   3篇
  2008年   3篇
  2007年   14篇
  2006年   11篇
  2005年   15篇
  2004年   13篇
  2003年   18篇
  2002年   14篇
  2001年   15篇
  2000年   15篇
  1999年   16篇
  1998年   10篇
  1997年   6篇
  1996年   13篇
  1995年   6篇
  1994年   13篇
  1993年   10篇
  1992年   12篇
  1991年   11篇
  1990年   15篇
  1989年   10篇
  1988年   12篇
  1987年   9篇
  1986年   3篇
  1985年   10篇
  1984年   5篇
  1983年   9篇
  1982年   8篇
  1981年   6篇
  1980年   5篇
  1979年   5篇
  1978年   4篇
  1977年   6篇
  1976年   3篇
  1975年   4篇
  1972年   1篇
  1971年   3篇
  1970年   2篇
  1968年   3篇
  1967年   3篇
  1951年   1篇
排序方式: 共有401条查询结果,搜索用时 234 毫秒
41.
Bacteria possess amino acid export systems, and Corynebacterium glutamicum excretes L-isoleucine in a process dependent on the proton motive force. In order to identify the system responsible for L-isoleucine export, we have used transposon mutagenesis to isolate mutants of C. glutamicum sensitive to the peptide isoleucyl-isoleucine. In one such mutant, strong peptide sensitivity resulted from insertion into a gene designated brnF encoding a hydrophobic protein predicted to possess seven transmembrane spanning helices. brnE is located downstream of brnF and encodes a second hydrophobic protein with four putative membrane-spanning helices. A mutant deleted of both genes no longer exports L-isoleucine, whereas an overexpressing strain exports this amino acid at an increased rate. BrnF and BrnE together are also required for the export of L-leucine and L-valine. BrnFE is thus a two-component export permease specific for aliphatic hydrophobic amino acids. Upstream of brnFE and transcribed divergently is an Lrp-like regulatory gene required for active export. Searches for homologues of BrnFE show that this type of exporter is widespread in prokaryotes but lacking in eukaryotes and that both gene products which together comprise the members of a novel family, the LIV-E family, generally map together within a single operon. Comparisons of the BrnF and BrnE phylogenetic trees show that gene duplication events in the early bacterial lineage gave rise to multiple paralogues that have been retained in alpha-proteobacteria but not in other prokaryotes analyzed.  相似文献   
42.
Twin-arginine targeting (Tat) protein secretion systems consist of two protein types, members of the TatA and TatC families. Homologues of these proteins are found in many archaea, bacteria, chloroplasts and mitochondria. Every prokaryotic organism with a fully sequenced genome exhibits either neither family member, or between one and three paralogues of these two family members. The Arabidopsis thaliana genome encodes three of each. Although many mitochondrially encoded TatC homologues have been identified, corresponding TatA homologues have not been found in this organelle. Phylogenetic analyses reveal that most prokaryotic Tat systems consist of one TatC homologue and two sequence-divergent TatA homologues (TatA and TatB). When only one TatA homologue is present, TatB is missing, and when three TatA homologues are present, the third one arose by duplication of TatA, not TatB. Further, homologues most resembling TatB are more sequence-divergent than those more closely resembling TatA. In contrast to the TatA family, the TatC family shows phylogenetic clustering in strict accordance with organismal type. These results are discussed in terms of their probable structural, functional and evolutionary significance.  相似文献   
43.
We have developed a program, ScreenTransporter (ST), to screen for potential members of recognized transporter families. This program uses Blastpgp as the engine to search a nonredundant database, NRDB90, based on an adjustable E-value cut-off as well as adjustable protein size criteria. Additional parameters can be integrated in later versions. ST is convenient for easily obtaining nonredundant members of transporter families starting from several homologous query sequences. The program can be applied to any protein family.  相似文献   
44.
DsbD and DsbB are two proteins that in Escherichia coli catalyze transmembrane electron flow in opposite directions, thereby allowing reversible oxidoreduction of periplasmic dithiol/disulfide-containing proteins. We have identified all recognizable homologues of these two proteins in the databases and have conducted structural and phylogenetic analyses of the two families. The larger DsbD family is more diverse in sequence, topology, function and organismal distribution than the smaller DsbB family. DsbB homologues are rarely found outside of the proteobacteria, although DsbD homologues are found in many bacterial kingdoms as well as archaea and plant chloroplasts. Few organisms with a fully sequenced genome and a DsbB homologue lack a DsbD homologue, and most of these DsbD homologues fall within two clusters in the DsbD tree, exhibiting phylogenetic relationships that are the same as those observed for the DsbB proteins. These observations suggest that a subset of the DsbD homologues evolved in parallel with the DsbB family to perform a single unified function involving reversible extracytoplasmic protein dithiol-disulfide bond interchange. DsbD family proteins are shown to have arisen by an internal gene duplication event, and this observation leads to prediction of the pathway taken for the evolutionary appearance of the different protein topological types found within this family.  相似文献   
45.
Amoebapores, synthesized by human protozoan parasites, form ion channels in target cells and artificial lipid membranes. The major pathogenic effect of these proteins is due to their cytolytic capability which results in target cell death. They comprise a coherent family and are homologous to other proteins and protein domains found in eight families. These families include in addition to the amoebapores (1) the saposins, (2) the NK-lysins and granulysins, (3) the pulmonary surfactant proteins B, (4) the acid sphingomyelinases, (5) acyloxyacyl hydrolases and (6) the aspartic proteases. These amoebapore homologues have many properties in common including membrane binding and stability. We note for the first time that a new protein, countin, from the cellular slime mold, Dictyostelium discoideum, comprises the eighth family within this superfamily. All currently sequenced members of these eight families are identified, and the structural, functional and phylogenetic properties of these proteins are discussed.  相似文献   
46.
The EcoCyc and MetaCyc databases   总被引:5,自引:0,他引:5       下载免费PDF全文
EcoCyc is an organism-specific Pathway/Genome Database that describes the metabolic and signal-transduction pathways of Escherichia coli, its enzymes, and-a new addition-its transport proteins. MetaCyc is a new metabolic-pathway database that describes pathways and enzymes of many different organisms, with a microbial focus. Both databases are queried using the Pathway Tools graphical user interface, which provides a wide variety of query operations and visualization tools. EcoCyc and MetaCyc are available at http://ecocyc.PangeaSystems.com/ecocyc/  相似文献   
47.
48.
49.
We have analyzed the relationships of homologues of the Escherichia coli CcmC protein for probable topological features and evolutionary relationships. We present bioinformatic evidence suggesting that the integral membrane proteins CcmC (E. coli; cytochrome c biogenesis System I), CcmF (E. coli; cytochrome c biogenesis System I) and ResC (Bacillus subtilis; cytochrome c biogenesis System II) are all related. Though the molecular functions of these proteins have not been fully described, they appear to be involved in the provision of heme to c-type cytochromes, and so we have named them the putative Heme Handling Protein (HHP) family (TC #9.B.14). Members of this family exhibit 6, 8, 10, 11, 13 or 15 putative transmembrane segments (TMSs). We show that intragenic triplication of a 2 TMS element gave rise to a protein with a 6 TMS topology, exemplified by CcmC. This basic 6 TMS unit then gave rise to two distinct types of proteins with 8 TMSs, exemplified by ResC and the archaeal CcmC, and these further underwent fusional or insertional events yielding proteins with 10, 11 and 13 TMSs (ResC homologues) as well as 15 TMSs (CcmF homologues). Specific evolutionary pathways taken are proposed. This work provides the first evidence for the pathway of appearance of distantly related proteins required for post-translational maturation of c-type cytochromes in bacteria, plants, protozoans and archaea.  相似文献   
50.
Zhang Z  Ma C  Pornillos O  Xiu X  Chang G  Saier MH 《Biochemistry》2007,46(17):5218-5225
The Bacillus subtilis genome contains two tandem genes, ebrA and ebrB, which encode two homologues of the SMR family of multidrug efflux transporters. The sequences of EbrA and EbrB are highly similar to each other and to that of EmrE, the prototypical SMR transporter of Escherichia coli. Drug resistance profiling and drug binding experiments showed that the presence of both EbrA and EbrB is required for proper transport function. EbrA and EbrB directly interact and combine to form a functional transporter. They likely form a heterodimer in analogy to the EmrE homodimer. Mutagenesis experiments indicate that the conserved membrane-embedded glutamates in the first transmembrane helices of both EbrA and EbrB are required for multidrug efflux activity. However, the two glutamates are nonequivalent since EbrA E15 is required for substrate binding while EbrB E14 is not. Our studies support a model in which functional residues in EbrAB are relegated to at least two sets that participate in distinct steps of the active drug transport process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号