首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2730篇
  免费   179篇
  国内免费   2篇
  2024年   3篇
  2023年   7篇
  2022年   9篇
  2021年   61篇
  2020年   23篇
  2019年   43篇
  2018年   58篇
  2017年   43篇
  2016年   84篇
  2015年   147篇
  2014年   179篇
  2013年   196篇
  2012年   265篇
  2011年   228篇
  2010年   173篇
  2009年   155篇
  2008年   201篇
  2007年   166篇
  2006年   159篇
  2005年   125篇
  2004年   122篇
  2003年   112篇
  2002年   65篇
  2001年   62篇
  2000年   58篇
  1999年   41篇
  1998年   19篇
  1997年   21篇
  1996年   15篇
  1995年   7篇
  1994年   3篇
  1993年   8篇
  1992年   13篇
  1991年   7篇
  1990年   4篇
  1989年   6篇
  1988年   2篇
  1987年   1篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1977年   1篇
  1975年   5篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1965年   1篇
  1954年   1篇
排序方式: 共有2911条查询结果,搜索用时 125 毫秒
11.
To study homologous recombination between repeated sequences in an in vitro simian virus 40 (SV40) replication system, we constructed a series of substrate DNAs that contain two identical fragments of monkey alpha-satellite repeats. Together with the SV40-pBR322 composite vector encoding Apr and Kmr, the DNAs also contain the Escherichia coli galactokinase gene (galK) positioned between two alpha-satellite fragments. The alpha-satellite sequence used consists of multiple units of tandem 172-bp sequences which differ by microheterogeneity. The substrate DNAs were incubated in an in vitro SV40 DNA replication system and used to transform the E. coli galK strain DH10B after digestion with DpnI. The number of E. coli galK Apr Kmr colonies which contain recombinant DNAs were determined, and their structures were analyzed. Products of equal and unequal crossovers between identical 172-bp sequences and between similar but not identical (homeologous) 172-bp sequences, respectively, were detected, although those of the equal crossover were predominant among all of the galK mutant recombinants. Similar products were also observed in the in vivo experiments with COS1 cells. The in vitro experiments showed that these recombinations were dependent on the presence of both the SV40 origin of DNA replication and SV40 large T antigen. Most of the recombinant DNAs were generated from newly synthesized DpnI-resistant DNAs. These results suggest that the homologous recombination observed in this SV40 system is associated with DNA replication and is suppressed by mismatches in heteroduplexes formed between similar but not identical sequences.  相似文献   
12.
13.
Microbial production of various TCA intermediates and related chemicals through the reductive TCA cycle has been of great interest. However, rumen bacteria that naturally possess strong reductive TCA cycle have been rarely studied to produce these chemicals, except for succinic acid, due to their dependence on fumarate reduction to transport electrons for ATP synthesis. In this study, malic acid (MA), a dicarboxylic acid of industrial importance, was selected as a target chemical for mass production using Mannheimia succiniciproducens, a rumen bacterium possessing a strong reductive branch of the TCA cycle. The metabolic pathway was reconstructed by eliminating fumarase to prevent MA conversion to fumarate. The respiration system of M. succiniciproducens was reconstructed by introducing the Actinobacillus succinogenes dimethylsulfoxide (DMSO) reductase to improve cell growth using DMSO as an electron acceptor. Also, the cell membrane was engineered by employing Pseudomonas aeruginosa cis-trans isomerase to enhance MA tolerance. High inoculum fed-batch fermentation of the final engineered strain produced 61 g/L of MA with an overall productivity of 2.27 g/L/h, which is the highest MA productivity reported to date. The systems metabolic engineering strategies reported in this study will be useful for developing anaerobic bioprocesses for the production of various industrially important chemicals.  相似文献   
14.
15.
In the preceding paper (Sheetz, M. and S.J. Singer. 1977. J Cell Biol. 73:638-646) it was shown that erythrocyte ghosts undergo pronounced shape changes in the presence of mg-ATP. The biochemical effects of the action of ATP are herein examined. The biochemical effects of the action of ATP are herein examined. Phosphorylation by ATP of spectrin component 2 of the erythrocyte membrane is known to occur. We have shown that it is only membrane protein that is significantly phosphorylated under the conditions where the shape changes are produced. The extent of this phosphorylation rises with increasing ATP concentration, reaching nearly 1 mol phosphoryle group per mole of component 2 at 8mM ATP. Most of this phosphorylation appears to occur at a single site on the protein molecule, according to cyanogen bromide peptide cleavage experiments. The degree of phosphorylation of component 2 is apparently also regulated by a membrane-bound protein phosphatase. This activity can be demonstrated in erythrocyte ghosts prepared from intact cells prelabeled with [(32)P]phosphate. In addition to the phosphorylation of component 2, some phosphorylation of lipids, mainly of phosphatidylinositol, is also known to occur. The ghost shape changes are, however, shown to be correlated with the degree of phosphorylation of component 2. In such experiment, the incorporation of exogenous phosphatases into ghosts reversed the shape changes produced by ATP, or by the membrane-intercalating drug chlorpromazine. The results obtained in this and the preceding paper are consistent with the proposal that the erythrocyte membrane possesses kinase and phosphates activities which produce phosphorylation and dephosphorylation of a specific site on spectrin component 2 molecules; the steady-state level of this phosphorylation regulates the structural state of the spectrin complex on the cytoplasmic surface of the membrane, which in turn exerts an important control on the shape of the cell.  相似文献   
16.
We have developed specific antibodies to synthetic peptide antigens that react with the individual subunits of casein kinase II (CKII). Using these antibodies, we studied the localization of CKII in asynchronous HeLa cells by immunofluorescence and immunoelectron microscopy. Further studies were done on HeLa cells arrested at the G1/S transition by hydroxyurea treatment. Our results indicate that the CKII alpha and beta subunits are localized in the cytoplasm during interphase and are distributed throughout the cell during mitosis. Further electron microscopic investigation revealed that CKII alpha subunit is associated with spindle fibers during metaphase and anaphase. In contrast, the CKII alpha' subunit is localized in the nucleus during G1 and in the cytoplasm during S. Taken together, our results suggest that CKII may play significant roles in cell division control by shifting its localization between the cytoplasm and nucleus.  相似文献   
17.
18.
The activity of p34cdc2 kinase is regulated in the phases of vertebrate cell cycle by mechanisms of phosphorylation and dephosphorylation. In this paper, we demonstrate that casein kinase II (CKII) phosphorylates p34cdc2 in vivo and in vitro at Ser39 during the G1 phase of HeLa cell division cycle. Human p34cdc2 shows a typical phosphorylation sequence motif site for CKII at Ser39 (ES39EEE). In our experiments, either p34cdc2 expressed and purified from bacteria or p34cdc2 immunoprecipitated from HeLa cells enriched in G1 by elutriation were substrates for in vitro phosphorylation by CKII. Phosphoamino acid analysis, N-chlorosuccinimide mapping, and two-dimensional tryptic mapping of p34cdc2 phosphorylated in vitro were performed to determine the phosphorylation site. A synthetic peptide spanning residues 33-50 of human p34cdc2, including the CKII site, was used to map the site. In addition, phosphorylation at Ser39 also occurs in vivo, since p34cdc2 is phosphorylated during G1 on serine, and its two-dimensional tryptic map shows two phosphopeptides that comigrate exactly with the synthetic peptides used as standard.  相似文献   
19.
Parrish JJ  Kim CI  Bae IH 《Theriogenology》1992,38(2):277-296
Genetic and biochemical approaches have contributed to an explosion of literature on cell-cycle control. Regulation of the cell-cycle is controlled by a series of kinases and phosphatases. Key control points are during the G(1)-S and G(2)-M transitions. During both transitions, cyclins interact with a specific kinase to allow a cell to pass through that phase. The meiotic maturation of oocytes, fertilization and embryo development are all events influenced by cell-cycle regulation. Understanding cell-cycle control should provide new ways for gamete and embryo biologists to approach culture and development problems.  相似文献   
20.
Gold salts and phenylbutazone selectively inhibit the synthesis of PGF and PGE2 respectively. Lowered production of one prostaglandin species is accompanied by an increased production of the other. Selective inhibition by these drugs was observed in the presence of adrenaline, reduced glutathione and copper sulphate under conditions when most anti-inflammatory compounds inhibited PGE2 and PGF syntheses equally. It is postulated that selective inhibitors may have a different mode of action and beneficial effects may be related to the endogenous ratio of PGE to PGF required for normal function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号