首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   464篇
  免费   81篇
  国内免费   2篇
  2021年   6篇
  2019年   6篇
  2017年   5篇
  2016年   14篇
  2015年   18篇
  2014年   13篇
  2013年   11篇
  2012年   19篇
  2011年   20篇
  2010年   17篇
  2009年   12篇
  2008年   20篇
  2007年   10篇
  2006年   15篇
  2005年   15篇
  2004年   15篇
  2003年   14篇
  2002年   18篇
  2001年   20篇
  2000年   15篇
  1999年   15篇
  1998年   6篇
  1997年   5篇
  1996年   6篇
  1995年   4篇
  1993年   8篇
  1992年   9篇
  1991年   17篇
  1990年   10篇
  1989年   5篇
  1988年   8篇
  1987年   13篇
  1986年   10篇
  1985年   12篇
  1984年   5篇
  1983年   9篇
  1982年   10篇
  1981年   5篇
  1980年   7篇
  1979年   11篇
  1978年   5篇
  1977年   5篇
  1976年   5篇
  1975年   5篇
  1971年   5篇
  1970年   11篇
  1968年   9篇
  1967年   11篇
  1966年   4篇
  1965年   3篇
排序方式: 共有547条查询结果,搜索用时 31 毫秒
471.
We have identified a novel gene, six transmembrane protein of prostate 1 (STAMP1), which is largely specific to prostate for expression and is predicted to code for a 490-amino acid six transmembrane protein. Using a form of STAMP1 labeled with green fluorescent protein in quantitative time-lapse and immunofluorescence confocal microscopy, we show that STAMP1 is localized to the Golgi complex, predominantly to the trans-Golgi network, and to the plasma membrane. STAMP1 also localizes to vesicular tubular structures in the cytosol and colocalizes with the early endosome antigen 1 (EEA1), suggesting that it may be involved in the secretory/endocytic pathways. STAMP1 is highly expressed in the androgen-sensitive, androgen receptor-positive prostate cancer cell line LNCaP, but not in androgen receptor-negative prostate cancer cell lines PC-3 and DU145. Furthermore, STAMP1 expression is significantly lower in the androgen-dependent human prostate xenograft CWR22 compared with the relapsed derivative CWR22R, suggesting that its expression may be deregulated during prostate cancer progression. Consistent with this notion, in situ analysis of human prostate cancer specimens indicated that STAMP1 is expressed exclusively in the epithelial cells of the prostate and its expression is significantly increased in prostate tumors compared with normal glands. Taken together, these data suggest that STAMP1 may have an important role in the normal prostate cell as well as in prostate cancer progression.  相似文献   
472.
This article will cover historical and recent aspects of reactions and mechanisms involved in the auxin-induced signalling cascade that terminates in the dramatic elongation growth of cells and plant organs. Massive evidence has accumulated that the final target of auxin action is the plasma membrane H+-ATPase, which excretes H+ ions into the cell wall compartment and, in an antiport, takes up K+ ions through an inwardly rectifying K+ channel. The auxin-enhanced H+ pumping lowers the cell wall pH, activates pH-sensitive enzymes and proteins within the wall, and initiates cell-wall loosening and extension growth. These processes, induced by auxin or by the "super-auxin" fusicoccin, can be blocked instantly and specifically by a voltage inhibition of the H+-ATPase due to removal of K+ ions or the addition of K+-channel blockers. Vice versa, H+ pumping and growth are immediately switched on by addition of K+ ions. Furthermore, the treatment of segments either with auxin or with fusicoccin (which activates the H+-ATPase irreversibly) or with acid buffers (from outside) causes an identical transformation and degradation pattern of cell wall constituents during cell-wall loosening and growth. These and other results described below are in agreement with the acid-growth theory of elongation growth. However, objections to this theory are also discussed.  相似文献   
473.
The nuclear receptor-binding SET domain-containing protein (NSD1) belongs to an emerging family of proteins, which have all been implicated in human malignancy. To gain insight into the biological functions of NSD1, we have generated NSD1-deficient mice by gene disruption. Homozygous mutant NSD1 embryos, which initiate mesoderm formation, display a high incidence of apoptosis and fail to complete gastrulation, indicating that NSD1 is a developmental regulatory protein that exerts function(s) essential for early post-implantation development. We have also examined the enzymatic potential of NSD1 and found that its SET domain possesses intrinsic histone methyltransferase activity with specificity for Lys36 of histone H3 (H3-K36) and Lys20 of histone H4 (H4-K20).  相似文献   
474.
The unique scanning capabilities of a hybrid linear ion trap (Q TRAP) mass spectrometer are described with an emphasis on proteomics applications. The combination of the very selective triple quadrupole based tandem mass spectrometry (MS/MS) scans with the very sensitive ion trap product ion scans allows rapid identification of peptides at low concentrations derived from post-translationally modified proteins on chromatographic time scales. The Q TRAP instrument also offers the opportunity to conduct a variety of ion processing steps prior to performing a mass scan. For example, the enhancement of the multiple-charge ion contents of the ion trap can be performed resulting in a survey mass spectrum dominated by double- and triple-charge peptides. This facilitates the identification of relevant biological species in both separated and unseparated peptide mixtures for further MS/MS experiments.  相似文献   
475.
476.
The human nuclear receptor liver receptor homolog 1 (hLRH-1) plays an important role in the development of breast carcinomas. This orphan receptor is efficiently downregulated by the unusual co-repressor SHP and has been thought to be ligand-independent. We present the crystal structure at a resolution of 1.9 A of the ligand-binding domain of hLRH-1 in complex with the NR box 1 motif of human SHP, which we find contacts the AF-2 region of hLRH-1 using selective structural motifs. Electron density indicates phospholipid bound within the ligand-binding pocket, which we confirm using mass spectrometry of solvent-extracted samples. We further show that pocket mutations reduce phospholipid binding and receptor activity in vivo. Our results indicate that hLRH-1's control of gene expression is mediated by phospholipid binding, and establish hLRH-1 as a novel target for compounds designed to slow breast cancer development.  相似文献   
477.
T cells that recognize nucleoproteins are required for the production of anti-dsDNA Abs involved in lupus development. SmD1 83-119 (a D1 protein of the Smith (Sm) proteins, part of small nuclear ribonucleoprotein) was recently shown to provide T cell help to anti-dsDNA Abs in the NZB/NZW model of lupus. Using this model in the present study, we showed that high dose tolerance to SmD1 (600-1000 microg i.v. of SmD1(83-119) peptide/mo) delays the production of autoantibodies, postpones the onset of lupus nephritis as confirmed by histology, and prolongs survival. Tolerance to SmD1 83-119 was adoptively transferred by CD90+ T cells, which also reduce T cell help for autoreactive B cells in vitro. One week after SmD1 83-119 tolerance induction in prenephritic mice, we detected cytokine changes in cultures of CD90+ T and B220+ B cells with decreased IFN-gamma and IL-4 expression and an increase in TGFbeta. Increased frequencies of regulatory IFN-gamma+ and IL10+ CD4+ T cells were later detected. Such regulatory IL-10+/IFN-gamma+ type 1 regulatory T cells prevented autoantibody generation and anti-CD3-induced proliferation of naive T cells. In conclusion, these results indicate that SmD1 83-119 peptide may play a dominant role in the activation of helper and regulatory T cells that influence autoantibody generation and murine lupus.  相似文献   
478.
Diabetes mellitus is a group of metabolic disorders, the incidence of which varies widely throughout the world. The treatment of diabetes mellitus includes insulin, oral antidiabetic agents, and dietary regimens. Although the emphasis is on macronutrients intakes, there is strong evidence that there is an abnormal metabolism of several micronutrients in diabetic individuals. Zinc is one of the essential micronutrients of which status and metabolism is altered in this condition. This work is a short review about the close relation among zinc, glucose metabolism, and insulin physiology, as well as about the few experimental data about zinc absorption and zinc supplementation in diabetes mellitus patients.  相似文献   
479.
480.
A cyclic version of the Entner-Doudoroff pathway is used by Pseudomonas aeruginosa to metabolize carbohydrates. Genes encoding the enzymes that catabolize intracellular glucose to pyruvate and glyceraldehyde 3-phosphate are coordinately regulated, clustered at 39 min on the chromosome, and collectively form the hex regulon. Within the hex cluster is an open reading frame (ORF) with homology to the devB/SOL family of unidentified proteins. This ORF encodes a protein of either 243 or 238 amino acids; it overlaps the 5' end of zwf (encodes glucose-6-phosphate dehydrogenase) and is followed immediately by eda (encodes the Entner-Doudoroff aldolase). The devB/SOL homolog was inactivated in P. aeruginosa PAO1 by recombination with a suicide plasmid containing an interrupted copy of the gene, creating mutant strain PAO8029. PAO8029 grows at 9% of the wild-type rate using mannitol as the carbon source and at 50% of the wild-type rate using gluconate as the carbon source. Cell extracts of PAO8029 were specifically deficient in 6-phosphogluconolactonase (Pgl) activity. The cloned devB/SOL homolog complemented PAO8029 to restore normal growth on mannitol and gluconate and restored Pgl activity. Hence, we have identified this gene as pgl and propose that the devB/SOL family members encode 6-phosphogluconolactonases. Interestingly, three eukaryotic glucose-6-phosphate dehydrogenase (G6PDH) isozymes, from human, rabbit, and Plasmodium falciparum, contain Pgl domains, suggesting that the sequential reactions of G6PDH and Pgl are incorporated in a single protein. 6-Phosphogluconolactonase activity is induced in P. aeruginosa PAO1 by growth on mannitol and repressed by growth on succinate, and it is expressed constitutively in P. aeruginosa PAO8026 (hexR). Taken together, these results establish that Pgl is an essential enzyme of the cyclic Entner-Doudoroff pathway encoded by pgl, a structural gene of the hex regulon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号