首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   25篇
  2021年   5篇
  2019年   12篇
  2018年   9篇
  2017年   8篇
  2016年   9篇
  2015年   18篇
  2014年   23篇
  2013年   18篇
  2012年   27篇
  2011年   31篇
  2010年   11篇
  2009年   6篇
  2008年   19篇
  2007年   24篇
  2006年   22篇
  2005年   13篇
  2004年   13篇
  2003年   9篇
  2002年   15篇
  2001年   11篇
  2000年   12篇
  1999年   7篇
  1998年   2篇
  1997年   3篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   10篇
  1988年   4篇
  1987年   8篇
  1986年   5篇
  1985年   2篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   6篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   3篇
  1968年   1篇
  1965年   3篇
  1961年   1篇
  1959年   1篇
  1936年   1篇
排序方式: 共有404条查询结果,搜索用时 29 毫秒
51.
52.
L Ma  R Ranganathan 《PloS one》2012,7(8):e42581
An oscillator consisting of KaiA, KaiB, and KaiC proteins comprises the core of cyanobacterial circadian clock. While one key reaction in this process-KaiC phosphorylation-has been extensively investigated and modeled, other key processes, such as the interactions among Kai proteins, are not understood well. Specifically, different experimental techniques have yielded inconsistent views about Kai A, B, and C interactions. Here, we first propose a mathematical model of cyanobacterial circadian clock that explains the recently observed dynamics of the four phospho-states of KaiC as well as the interactions among the three Kai proteins. Simulations of the model show that the interaction between KaiB and KaiC oscillates with the same period as the phosphorylation of KaiC, but displays a phase delay of ~8 hr relative to the total phosphorylated KaiC. Secondly, this prediction on KaiB-C interaction are evaluated using a novel FRET (Fluorescence Resonance Energy Transfer)-based assay by tagging fluorescent proteins Cerulean and Venus to KaiC and KaiB, respectively, and reconstituting fluorescent protein-labeled in vitro clock. The data show that the KaiB∶KaiC interaction indeed oscillates with ~24 hr periodicity and ~8 hr phase delay relative to KaiC phosphorylation, consistent with model prediction. Moreover, it is noteworthy that our model indicates that the interlinked positive and negative feedback loops are the underlying mechanism for oscillation, with the serine phosphorylated-state (the "S-state") of KaiC being a hub for the feedback loops. Because the kinetics of the KaiB-C interaction faithfully follows that of the S-state, the FRET measurement may provide an important real-time probe in quantitative study of the cyanobacterial circadian clock.  相似文献   
53.
Peptide/protein hormones could be stored as non-toxic amyloid-like structures in pituitary secretory granules. ACTH and β-endorphin are two of the important peptide hormones that get co-stored in the pituitary secretory granules. Here, we study molecular interactions between ACTH and β-endorphin and their colocalization in the form of amyloid aggregates. Although ACTH is known to be a part of ACTH-β-endorphin aggregate, ACTH alone cannot aggregate into amyloid under various plausible conditions. Using all atom molecular dynamics simulation we investigate the early molecular interaction events in the ACTH-β-endorphin system, β-endorphin-only system and ACTH-only system. We find that β-endorphin and ACTH formed an interacting unit, whereas negligible interactions were observed between ACTH molecules in ACTH-only system. Our data suggest that ACTH is not only involved in interaction with β-endorphin but also enhances the stability of mixed oligomers of the entire system.  相似文献   
54.
55.
56.
An overview of enzymatic production of biodiesel   总被引:13,自引:0,他引:13  
Biodiesel production has received considerable attention in the recent past as a biodegradable and nonpolluting fuel. The production of biodiesel by transesterification process employing alkali catalyst has been industrially accepted for its high conversion and reaction rates. Recently, enzymatic transesterification has attracted much attention for biodiesel production as it produces high purity product and enables easy separation from the byproduct, glycerol. But the cost of enzyme remains a barrier for its industrial implementation. In order to increase the cost effectiveness of the process, the enzyme (both intracellular and extracellular) is reused by immobilizing in a suitable biomass support particle and that has resulted in considerable increase in efficiency. But the activity of immobilized enzyme is inhibited by methanol and glycerol which are present in the reacting mixture. The use of tert-butanol as solvent, continuous removal of glycerol, stepwise addition of methanol are found to reduce the inhibitory effects thereby increasing the cost effectiveness of the process. The present review analyzes these methods reported in literature and also suggests a suitable method for commercialization of the enzymatic process.  相似文献   
57.
58.
Reef-building corals are renowned for their brilliant colours yet the biochemical basis for the pigmentation of corals is unknown. Here, we show that these colours are due to a family of GFP-like proteins that fluoresce under ultraviolet (UV) or visible light. Pigments from ten coral species were almost identical to pocilloporin (Dove et al. 1995) being dimers or trimers with approximately 28-kDa subunits. Degenerative primers made to common N-terminal sequences yielded a complete sequence from reef-building coral cDNA, which had 19.6% amino acid identity with green fluorescent protein (GFP). Molecular modelling revealed a `β-can' structure, like GFP, with 11 β-strands and a completely solvent-inaccessible fluorophore composed of the modified residues Gln-61, Tyr-62 and Gly-63. The molecular properties of pocilloporins indicate a range of functions from the conversion of high-intensity UV radiation into photosynthetically active radiation (PAR) that can be regulated by the dinoflagellate peridinin-chlorophyll-protein (PCP) complex, to the shielding of the Soret and Qx bands of chlorophyll a and c from scattered high-intensity light. These properties of pocilloporin support its potential role in protecting the photosynthetic machinery of the symbiotic dinoflagellates of corals under high light conditions and in enhancing the availability of photosynthetic light under shade conditions. Accepted: 29 May 2000  相似文献   
59.
Endophytic fungi, especially from mangrove plants, are rich source of secondary metabolites, which plays a major role in various pharmacological actions preferably in cancer and bacterial infections. To perceive its role in antidiabetic activity we isolated and tested the metabolites derived from a novel strain Alternaria longipes strain VITN14G obtained from mangrove plant Avicennia officinalis. The crude extract was analyzed for antidiabetic activity and subjected to column chromatography. The isolated fractions were screened in vitro for α-glucosidase and α-amylase inhibitory activities. The cytotoxicity of the isolated fractions was studied on L929 cell lines. Following which, the screened fraction 2 was allowed for structure elucidation using gas chromatography-mass spectrometry, one-dimensional, two-dimensional nuclear magnetic resonance spectroscopy, ultraviolet, and Fourier-transform infrared analysis. The binding energies of the isolated fraction 2 with glycolytic enzymes were calculated by molecular docking studies using AutoDock Vina. The isolated fraction 2 identified as 2,4,6-triphenylaniline, showed no significant difference in α-amylase inhibition rates and a significant difference of 10% in α-glucosidase inhibition rates than that of the standard drug acarbose. Further, the cytotoxicity assay of the isolated fraction 2 resulted in a cell viability of 73.96%. Supportingly, in silico studies showed 2,4,6-triphenylaniline to produce a stronger binding affinity toward the glycolytic enzyme targets. The compound 2,4,6-triphenylaniline isolated from A. longipes strain VITN14G exhibited satisfactory antidiabetic activity for type 2 diabetes in vitro, which will further be confirmed by in vivo studies. Successful outcome of the study will result in a natural substitute for existing synthetic antidiabetic drugs.  相似文献   
60.
Ethanol was tested for teratogenicity in Drosophila melanogaster. Treatment consisted of rearing the fly larvae in media containing initial ethanol concentrations of 0%, 4%, 8%, or 14% by weight. Emerging flies were inspected for gross malformations. A low frequency of malformations was seen among controls (0.82%), increasing to 10.36% of emerging adults at the highest ethanol dose. The most common malformation involved the legs (segments missing or distorted or complete absence) and wings (uninflated, distorted, or absent). Less frequent defects included fused or missing mouth parts and missing halteres. Also, by exposing staged larvae to ethanol and examining the emerging flies, developmental stage sensitivity of Drosophila was investigated in terms of timing of treatment initiation. The results suggested that the incidence of defects increased with length of exposure. These results support the assumption that ethanol itself is the causative agent in ethanol-induced developmental toxicity and further support the use of Drosophila for developmental toxicity screening.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号