首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
蓝藻是具有内源性生物钟的简单生物.虽然蓝藻生物钟具有跟真核生物同样的基础特征,但其相关基因和蛋白质与真核生物没有同源性.蓝藻生物钟的核心是kai基因簇及其编码的蛋白KaiA,KaiB和KaiC.这三种Kai蛋白相互作用调节KaiC的磷酸化状态,从而产生昼夜节律信息.KaiC的磷酸化循环是昼夜节律的起博器,调控包括kai基因在内的相关基因的节律性表达.组氨酸蛋白激酶的磷酸化传递可将环境信息输入和将节律信息输出生物钟核心.  相似文献   

2.
Biochemical circadian oscillation of KaiC phosphorylation, by mixing three Kai proteins and ATP, has been proven to be the central oscillator of the cyanobacterial circadian clock. In vivo, the intracellular levels of KaiB and KaiC oscillate in a circadian fashion. By scrutinizing KaiC phosphorylation rhythm in a wide range of Kai protein concentrations, KaiA and KaiB were found to be “parameter-tuning” and “state-switching” regulators of KaiC phosphorylation rhythm, respectively. Our results also suggest a possible entrainment mechanism of the cellular circadian clock with the circadian variation of intracellular levels of Kai proteins.  相似文献   

3.
Dynamic protein-protein interactions play an essential role in cellular regulatory systems. The cyanobacterial circadian clock is an oscillatory system that can be reconstituted in vitro by mixing ATP and three clock proteins: KaiA, KaiB, and KaiC. Association and dissociation of KaiB from KaiC-containing complexes are critical to circadian phosphorylation and dephosphorylation of KaiC. We developed an automated and noninvasive method to monitor dynamic complex formation in real time using confocal fluorescence correlation spectroscopy (FCS) and uniformly labeled KaiB as a probe. A nanomolar concentration of the labeled KaiB for FCS measurement did not interfere with the oscillatory system but behaved similarly to the wild-type one during the measurement period (>5 days). The fluorescent probe was stable against repeated laser exposure. As an application, we show that this detection system allowed analysis of the dynamics of both long term circadian oscillations and short term responses to temperature changes (~10 min) in the same sample. This suggested that a phase shift of the clock with a high temperature pulse occurred just after the stimulus through dissociation of KaiB from the KaiC complex. This monitoring method should improve our understanding of the mechanisms underlying this cellular circadian oscillator and provide a means to assess dynamic protein interactions in biological systems characterized by rates similar to those observed with the Kai proteins.  相似文献   

4.
In the cyanobacterium Synechococcus elongatus PCC 7942, the KaiA, KaiB and KaiC proteins are essential for generation of circadian rhythms. We quantitatively analyzed the intracellular dynamics of these proteins and found a circadian rhythm in the membrane/cytosolic localization of KaiB, such that KaiB interacts with a KaiA-KaiC complex during the late subjective night. KaiB-KaiC binding is accompanied by a dramatic reduction in KaiC phosphorylation and followed by dissociation of the clock protein complex(es). KaiB attenuated KaiA-enhanced phosphorylation both in vitro and in vivo. Based on these results, we propose a novel role for KaiB in a regulatory link among subcellular localization, protein-protein interactions and post-translational modification of Kai proteins in the cyanobacterial clock system.  相似文献   

5.
KaiA, KaiB, and KaiC are essential proteins of the circadian clock in the cyanobacterium Synechococcus elongatus PCC 7942. The phosphorylation cycle of KaiC that occurs in vitro after mixing the three proteins and ATP is thought to be the master oscillation governing the circadian system. We analyzed the temporal profile of complexes formed between the three Kai proteins. In the phosphorylation phase, KaiA actively and repeatedly associated with KaiC to promote KaiC phosphorylation. High levels of phosphorylation of KaiC induced the association of the KaiC hexamer with KaiB and inactivate KaiA to begin the dephosphorylation phase, which is closely linked to shuffling of the monomeric KaiC subunits among the hexamer. By reducing KaiC phosphorylation, KaiB dissociated from KaiC, reactivating KaiA. We also confirmed that a similar model can be applied in cyanobacterial cells. The molecular model proposed here provides mechanisms for circadian timing systems.  相似文献   

6.
Xu Y  Mori T  Johnson CH 《The EMBO journal》2003,22(9):2117-2126
Using model strains in which we ectopically express the cyanobacterial clock protein KaiC in cells from which the clock genes kaiA, kaiB and/or kaiC are deleted, we found that some features of circadian clocks in eukaryotic organisms are conserved in the clocks of prokaryotic cyanobacteria, but others are not. One unexpected difference is that the circadian autoregulatory feedback loop in cyanobacteria does not require specific clock gene promoters as it does in eukaryotes, because a heterologous promoter can functionally replace the kaiBC promoter. On the other hand, a similarity between eukaryotic clock proteins and the cyanobacterial KaiC protein is that KaiC is phosphorylated in vivo. The other essential clock proteins KaiA and KaiB modulate the status of KaiC phosphorylation; KaiA inhibits KaiC dephosphorylation and KaiB antagonizes this action of KaiA. Based upon an analysis of clock mutants, we conclude that the circadian period in cyanobacteria is determined by the phosphorylation status of KaiC and also by the degradation rate of KaiC. These observations are integrated into a model proposing rhythmic changes in chromosomal status.  相似文献   

7.
8.
In recent experimental reports, robust circadian oscillation of the phosphorylation level of KaiC has been reconstituted by incubating three cyanobacterial proteins, KaiA, KaiB, and KaiC, with ATP in vitro. This reconstitution indicates that protein-protein interactions and the associated ATP hydrolysis suffice to generate the oscillation, and suggests that the rhythm arising from this protein-based system is the circadian clock pacemaker in cyanobacteria. The mechanism of this reconstituted oscillation, however, remains elusive. In this study, we extend our previous model of oscillation by explicitly taking two phosphorylation sites of KaiC into account and we apply the extended model to the problem of synchrony of two oscillatory samples mixed at different phases. The agreement between the simulated and observed data suggests that the combined mechanism of the allosteric transition of KaiC hexamers and the monomer shuffling between them plays a key role in synchronization among KaiC hexamers and hence underlies the population-level oscillation of the ensemble of Kai proteins. The predicted synchronization patterns in mixtures of unequal amounts of two samples provide further opportunities to experimentally check the validity of the proposed mechanism. This mechanism of synchronization should be important in vivo for the persistent oscillation when Kai proteins are synthesized at random timing in cyanobacterial cells.  相似文献   

9.
10.
11.
Cyanobacteria are among the simplest organisms that show daily rhythmicity. Their circadian rhythms consist of the localization, interaction, and accumulation of various proteins, including KaiA, KaiB, KaiC, and SasA. We have determined the 1.9-angstroms resolution crystallographic structure of the cyanobacterial KaiB clock protein from Synechocystis sp. PCC6803. This homotetrameric structure reveals a novel KaiB interface for protein-protein interaction; the protruding hydrophobic helix-turn-helix motif of one subunit fits into a groove between two beta-strands of the adjacent subunit. A cyanobacterial mutant, in which the Asp-Lys salt bridge mediating this tetramer-forming interaction is disrupted by mutation of Asp to Gly, exhibits severely impaired rhythmicity (a short free-running period; approximately 19 h). The KaiB tetramer forms an open square, with positively charged residues around the perimeter. KaiB is localized on the phospholipid-rich membrane and translocates to the cytosol to interact with the other Kai components, KaiA and KaiC. KaiB antagonizes the action of KaiA on KaiC, and shares a sequence-homologous domain with the SasA kinase. Based on our structure, we discuss functional roles for KaiB in the circadian clock.  相似文献   

12.
13.
Recent cyanobacterial Kai protein structures suggest a rotary clock   总被引:2,自引:0,他引:2  
The cyanobacterial circadian oscillator consists of three Kai proteins, KaiA, KaiB, and KaiC, in its oscillation feedback loop. Structural comparison reveals that the Kai system resembles the F1-ATPase system in which KaiC is equivalent to alpha(3)beta(3), KaiA to gammadelta, and KaiB to its inhibitory factor. It also suggests that there exists a possible haemagglutinin-like spring-loaded mechanism for the activation of KaiA during the formation of Kai complexes.  相似文献   

14.
Physical interactions among clock-related proteins KaiA, KaiB, KaiC, and SasA are proposed to be important for circadian function in the cyanobacterium Synechococcus elongatus PCC 7942. Here we show that the Kai proteins and SasA form heteromultimeric protein complexes dynamically in a circadian fashion. KaiC forms protein complexes of approximately 350 and 400-600 kDa during the subjective day and night, respectively, and serves as a core of the circadian protein complexes. This change in the size of the KaiC-containing complex is accompanied by nighttime-specific interaction of KaiA and KaiB with KaiC. In various arrhythmic mutants that lack each functional Kai protein or SasA, circadian rhythms in formation of the clock protein complex are abolished, and the size of the protein complexes is dramatically affected. Thus, circadian-regulated formation of the clock protein complexes is probably a critical process in the generation of circadian rhythm in cyanobacteria.  相似文献   

15.
In vitro incubation of three Kai proteins, KaiA, KaiB, and KaiC, with ATP induces a KaiC phosphorylation cycle that is a potential circadian clock pacemaker in cyanobacterium Synechococcus elongatus PCC 7942. The Kai proteins assemble into large heteromultimeric complexes (periodosome) to effect a robust oscillation of KaiC phosphorylation. Here, we report real-time measurements of the assembly/disassembly dynamics of the Kai periodosome by using small-angle X-ray scattering and determination of the low-resolution shapes of the KaiA:KaiC and KaiB:KaiC complexes. Most previously identified period-affecting mutations could be mapped to the association interfaces of our complex models. Our results suggest that the assembly/disassembly processes are crucial for phase entrainment in the early synchronizing stage but are passively driven by the phosphorylation status of KaiC in the late oscillatory stage. The Kai periodosome is assembled in such a way that KaiA and KaiB are recruited to a C-terminal region of KaiC in a phosphorylation-dependent manner.  相似文献   

16.
17.
18.
蓝藻是已知的具有昼夜节律生物钟调控机制的最简单生物,其生物钟的核心是一个由三个蛋白质(Kai A、Kai B、Kai C)组成的,不依赖于转录翻译水平调控的核心振荡器.研究表明这三个蛋白质仅在体外试管中反应就会表现出周期性磷酸化振荡现象.分子水平研究表明:Kai A加速Kai C的自磷酸化,而Kai B抑制Kai A使Kai C去磷酸化,从而Kai C的磷酸化/去磷酸化形成周期性反复.但是Kai B如何与Kai A,Kai C相互作用,目前还不清楚.本文重点介绍了最近几年来在Kai B-Kai C相互作用机制上的研究进展,并结合我们的一些初步研究,对Kai B-Kai C相互作用的关键问题进行展望,以期为该体系的深入研究提供参考.  相似文献   

19.
The cyanobacterial circadian clock can be reconstituted in vitro by mixing recombinant KaiA, KaiB and KaiC proteins with ATP, producing KaiC phosphorylation and dephosphorylation cycles that have a regular rhythm with a ca. 24-h period and are temperature-compensated. KaiA and KaiB are modulators of KaiC phosphorylation, whereby KaiB antagonizes KaiA's action. Here, we present a complete crystallographic model of the Synechococcus elongatus KaiC hexamer that includes previously unresolved portions of the C-terminal regions, and a negative-stain electron microscopy study of S. elongatus and Thermosynechococcus elongatus BP-1 KaiA-KaiC complexes. Site-directed mutagenesis in combination with EM reveals that KaiA binds exclusively to the CII half of the KaiC hexamer. The EM-based model of the KaiA-KaiC complex reveals protein-protein interactions at two sites: the known interaction of the flexible C-terminal KaiC peptide with KaiA, and a second postulated interaction between the apical region of KaiA and the ATP binding cleft on KaiC. This model brings KaiA mutation sites that alter clock period or abolish rhythmicity into contact with KaiC and suggests how KaiA might regulate KaiC phosphorylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号