首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   514篇
  免费   66篇
  2021年   6篇
  2019年   4篇
  2017年   6篇
  2016年   9篇
  2015年   12篇
  2014年   21篇
  2013年   30篇
  2012年   30篇
  2011年   28篇
  2010年   19篇
  2009年   10篇
  2008年   14篇
  2007年   23篇
  2006年   21篇
  2005年   13篇
  2004年   13篇
  2003年   26篇
  2002年   18篇
  2001年   12篇
  2000年   24篇
  1999年   10篇
  1998年   10篇
  1997年   12篇
  1996年   9篇
  1995年   8篇
  1994年   10篇
  1992年   6篇
  1991年   9篇
  1990年   5篇
  1989年   6篇
  1988年   8篇
  1987年   5篇
  1986年   7篇
  1985年   10篇
  1984年   5篇
  1983年   4篇
  1982年   9篇
  1981年   9篇
  1980年   7篇
  1979年   6篇
  1978年   4篇
  1977年   9篇
  1975年   7篇
  1974年   6篇
  1973年   5篇
  1972年   5篇
  1968年   7篇
  1964年   6篇
  1958年   3篇
  1934年   3篇
排序方式: 共有580条查询结果,搜索用时 93 毫秒
61.
The formation of phosphatidic acid (PA) from lysophosphatidic acid (LPA), diacylglycerol, or phosphatidylcholine plays a key role in the regulation of intracellular membrane fission events, but the underlying molecular mechanism has not been resolved. A likely possibility is that PA affects local membrane curvature facilitating membrane bending and fission. To examine this possibility, we determined the spontaneous radius of curvature (R(0p)) of PA and LPA, carrying oleoyl fatty acids, using well-established X-ray diffraction methods. We found that, under physiological conditions of pH and salt concentration (pH 7.0, 150 mM NaCl), the R(0p) values of PA and LPA were -46 A and +20 A, respectively. Thus PA has considerable negative spontaneous curvature while LPA has the most positive spontaneous curvature of any membrane lipid measured to date. The further addition of Ca(2+) did not significantly affect lipid spontaneous curvature; however, omitting NaCl from the hydration buffer greatly reduced the spontaneous curvature of PA, turning it into a cylindrically shaped lipid molecule (R(0p) of -1.3 x 10(2) A). Our quantitative data on the spontaneous radius of curvature of PA and LPA at a physiological pH and salt concentration will be instrumental in developing future models of biomembrane fission.  相似文献   
62.
Human populations are arranged in social networks that determine interactions and influence the spread of diseases, behaviours and ideas. We evaluate the spread of long-term emotional states across a social network. We introduce a novel form of the classical susceptible–infected–susceptible disease model which includes the possibility for ‘spontaneous’ (or ‘automatic’) infection, in addition to disease transmission (the SISa model). Using this framework and data from the Framingham Heart Study, we provide formal evidence that positive and negative emotional states behave like infectious diseases spreading across social networks over long periods of time. The probability of becoming content is increased by 0.02 per year for each content contact, and the probability of becoming discontent is increased by 0.04 per year per discontent contact. Our mathematical formalism allows us to derive various quantities from the data, such as the average lifetime of a contentment ‘infection’ (10 years) or discontentment ‘infection’ (5 years). Our results give insight into the transmissive nature of positive and negative emotional states. Determining to what extent particular emotions or behaviours are infectious is a promising direction for further research with important implications for social science, epidemiology and health policy. Our model provides a theoretical framework for studying the interpersonal spread of any state that may also arise spontaneously, such as emotions, behaviours, health states, ideas or diseases with reservoirs.  相似文献   
63.
The expression of Escherichia coli umuD gene products is upregulated as part of the SOS response to DNA damage. UmuD is initially produced as a 139-amino-acid protein, which subsequently cleaves off its N-terminal 24 amino acids in a reaction dependent on RecA/single-stranded DNA, giving UmuD′. The two forms of the umuD gene products play different roles in the cell. UmuD is implicated in a primitive DNA damage checkpoint and prevents DNA polymerase IV-dependent − 1 frameshift mutagenesis, while the cleaved form facilitates UmuC-dependent mutagenesis via formation of DNA polymerase V (UmuD′2C). Thus, the cleavage of UmuD is a crucial switch that regulates replication and mutagenesis via numerous protein-protein interactions. A UmuD variant, UmuD3A, which is noncleavable but is a partial biological mimic of the cleaved form UmuD′, has been identified. We used hydrogen-deuterium exchange mass spectrometry (HXMS) to probe the conformations of UmuD, UmuD′, and UmuD3A. In HXMS experiments, backbone amide hydrogens that are solvent accessible or not involved in hydrogen bonding become labeled with deuterium over time. Our HXMS results reveal that the N-terminal arm of UmuD, which is truncated in the cleaved form UmuD′, is dynamic. Residues that are likely to contact the N-terminal arm show more deuterium exchange in UmuD′ and UmuD3A than in UmuD. These observations suggest that noncleavable UmuD3A mimics the cleaved form UmuD′ because, in both cases, the arms are relatively unbound from the globular domain. Gas-phase hydrogen exchange experiments, which specifically probe the exchange of side-chain hydrogens and are carried out on shorter timescales than solution experiments, show that UmuD′ incorporates more deuterium than either UmuD or UmuD3A. This work indicates that these three forms of the UmuD gene products are highly flexible, which is of critical importance for their many protein interactions.  相似文献   
64.
Efficient mitochondrial function requires physical interactions between the proteins encoded by the mitochondrial and nuclear genomes. Coevolution between these genomes may result in the accumulation of incompatibilities between divergent lineages. We test whether mitochondrial–nuclear incompatibilities have accumulated within the Drosophila melanogaster species subgroup by combining divergent mitochondrial and nuclear lineages and quantifying the effects on relative fitness. Precise placement of nine mtDNAs from D. melanogaster, D. simulans, and D. mauritiana into two D. melanogaster nuclear genetic backgrounds reveals significant mitochondrial–nuclear epistasis affecting fitness in females. Combining the mitochondrial genomes with three different D. melanogaster X chromosomes reveals significant epistasis for male fitness between X‐linked and mitochondrial variation. However, we find no evidence that the more than 500 fixed differences between the mitochondrial genomes of D. melanogaster and the D. simulans species complex are incompatible with the D. melanogaster nuclear genome. Rather, the interactions of largest effect occur between mitochondrial and nuclear polymorphisms that segregate within species of the D. melanogaster species subgroup. We propose that a low mitochondrial substitution rate, resulting from a low mutation rate and/or efficient purifying selection, precludes the accumulation of mitochondrial–nuclear incompatibilities among these Drosophila species.  相似文献   
65.
A role for chromosomal protein HMGN1 in corneal maturation   总被引:2,自引:0,他引:2  
Abstract Corneal differentiation and maturation are associated with major changes in the expression levels of numerous genes, including those coding for the chromatin-binding high-mobility group (HMG) proteins. Here we report that HMGN1, a nucleosome-binding protein that alters the structure and activity of chromatin, affects the development of the corneal epithelium in mice. The corneal epithelium of Hmgn1 −/− mice is thin, has a reduced number of cells, is poorly stratified, is depleted of suprabasal wing cells, and its most superficial cell layer blisters. In mature Hmgn1 −/− mice, the basal cells retain the ovoid shape of immature cells, and rest directly on the basal membrane which is disorganized. Gene expression was modified in Hmgn1 −/− corneas: glutathione-S-transferase (GST)α 4and GST ω 1, epithelial layer-specific markers, were selectively reduced while E-cadherin and α-, β-, and γ-catenin, components of adherens junctions, were increased. Immunofluorescence analysis reveals a complete co-localization of HMGN1 and p63 in small clusters of basal corneal epithelial cells of wild-type mice, and an absence of p63 expressing cells in the central region of the Hmgn1 −/− cornea. We suggest that interaction of HMGN1 with chromatin modulates the fidelity of gene expression and affects corneal development and maturation.  相似文献   
66.
67.
We previously showed that thioredoxins are required for dithiothreitol (DTT) tolerance, suggesting they maintain redox homeostasis in response to both oxidative and reductive stress conditions. In this present study, we screened the complete set of viable deletion strains in Saccharomyces cerevisiae for sensitivity to DTT to identify cell functions involved in resistance to reductive stress. We identified 195 mutants, whose gene products are localized throughout the cell. DTT-sensitive mutants were distributed among most major biological processes, but they particularly affected gene expression, metabolism, and the secretory pathway. Strikingly, a mutant lacking TSA1, encoding a peroxiredoxin, showed a similar sensitivity to DTT as a thioredoxin mutant. Epistasis analysis indicated that thioredoxins function upstream of Tsa1 in providing tolerance to DTT. Our data show that the chaperone function of Tsa1, rather than its peroxidase function, is required for this activity. Cells lacking TSA1 were found to accumulate aggregated proteins, and this was exacerbated by exposure to DTT. Analysis of the protein aggregates revealed that they are predominantly composed of ribosomal proteins. Furthermore, aggregation was found to correlate with an inhibition of translation initiation. We propose that Tsa1 normally functions to chaperone misassembled ribosomal proteins, preventing the toxicity that arises from their aggregation.  相似文献   
68.
Sakhalin taimen (Parahucho perryi) range from the Russian Far East mainland along the Sea of Japan coast, and Sakhalin, Kuril, and Hokkaido Islands and are considered to primarily be an anadromous species. We used otolith strontium-to-calcium ratios (Sr/Ca) to determine the chronology of migration between freshwater and saltwater and identify migratory contingents of taimen collected from the Koppi River, Russia. In addition, we examined taimen from the Sarufutsu River, Japan and Tumnin River, Russia that were captured in marine waters. Transects of otolith Sr/Ca for the Sarufutsu River fish were consistent with patterns observed in anadromous salmonids. Two fish from the Tumnin River appeared to be recent migrants to saltwater and one fish was characterized by an otolith Sr/Ca transect consistent with marine migration. Using these transects as benchmarks, all Koppi River taimen were classified as freshwater residents. These findings suggest more work is needed to assess life history variability among locations and the role of freshwater productivity in controlling migratory behavior in taimen.  相似文献   
69.
70.
Factor VIIa (FVIIa) circulates in the blood in a zymogen-like state. Only upon association with membrane-bound tissue factor (TF) at the site of vascular injury does FVIIa become active and able to initiate blood coagulation. Here we used hydrogen exchange monitored by mass spectrometry to investigate the conformational effects of site-directed mutagenesis at key positions in FVIIa and the origins of enhanced intrinsic activity of FVIIa analogs. The differences in hydrogen exchange of two highly active variants, FVIIa(DVQ) and FVIIa(VEAY), imply that enhanced catalytic efficiency was attained by two different mechanisms. Regions protected from exchange in FVIIa(DVQ) include the N-terminal tail and the activation pocket, which is a subset of the regions of FVIIa protected from exchange upon TF binding. FVIIa(DVQ) appeared to adopt an intermediate conformation between the free (zymogen-like) and TF-bound (active) form of FVIIa and to attain enhanced activity by partial mimicry of TF-induced activation. In contrast, exchange-protected regions in FVIIa(VEAY) were confined to the vicinity of the active site of FVIIa. Thus, the changes in FVIIa(VEAY) appeared to optimize the active site region rather than imitate the TF-induced effect. Hydrogen exchange analysis of the FVIIa(M306D) variant, which was unresponsive to stimulation by TF, correlated widespread reductions in exchange to the single mutation in the TF-binding region. These results reveal the delicate interplay between key allosteric sites necessary to achieve the transition of FVIIa into the active form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号