首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1667篇
  免费   88篇
  2021年   52篇
  2020年   14篇
  2019年   12篇
  2018年   34篇
  2017年   36篇
  2016年   54篇
  2015年   74篇
  2014年   98篇
  2013年   122篇
  2012年   135篇
  2011年   126篇
  2010年   68篇
  2009年   46篇
  2008年   68篇
  2007年   77篇
  2006年   82篇
  2005年   63篇
  2004年   71篇
  2003年   58篇
  2002年   37篇
  2001年   19篇
  2000年   23篇
  1999年   24篇
  1998年   11篇
  1997年   13篇
  1996年   12篇
  1995年   8篇
  1994年   13篇
  1993年   8篇
  1992年   17篇
  1991年   16篇
  1990年   18篇
  1989年   22篇
  1988年   22篇
  1987年   19篇
  1986年   14篇
  1985年   17篇
  1984年   18篇
  1983年   6篇
  1982年   6篇
  1981年   7篇
  1980年   8篇
  1979年   19篇
  1978年   7篇
  1976年   13篇
  1975年   6篇
  1973年   10篇
  1972年   14篇
  1971年   5篇
  1970年   6篇
排序方式: 共有1755条查询结果,搜索用时 31 毫秒
101.
Familial partial lipodystrophy (FPLD), Dunnigan variety, is an autosomal dominant disorder characterized by marked loss of subcutaneous adipose tissue from the extremities and trunk but by excess fat deposition in the head and neck. The disease is frequently associated with profound insulin resistance, dyslipidemia, and diabetes. We have localized a gene for FPLD to chromosome 1q21-q23, and it has recently been proposed that nuclear lamin A/C is altered in FPLD, on the basis of a novel missense mutation (R482Q) in five Canadian probands. This gene had previously been shown to be altered in autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD-AD) and in dilated cardiomyopathy and conduction-system disease. We examined 15 families with FPLD for mutations in lamin A/C. Five families harbored the R482Q alteration that segregated with the disease phenotype. Seven families harbored an R482W alteration, and one family harbored a G465D alteration. All these mutations lie within exon 8 of the lamin A/C gene-an exon that has also been shown to harbor different missense mutations that are responsible for EDMD-AD. Mutations could not be detected in lamin A/C in one FPLD family in which there was linkage to chromosome 1q21-q23. One family with atypical FPLD harbored an R582H alteration in exon 11 of lamin A. This exon does not comprise part of the lamin C coding region. All mutations in FPLD affect the globular C-terminal domain of the lamin A/C protein. In contrast, mutations responsible for dilated cardiomyopathy and conduction-system disease are observed in the rod domain of the protein. The FPLD mutations R482Q and R482W occurred on different haplotypes, indicating that they are likely to have arisen more than once.  相似文献   
102.
In addition to its anticoagulant properties, heparin (HP), a complex polysaccharide covalently linked to a protein core, inhibits proliferation of several cell types including pulmonary artery smooth muscle cells (PASMCs). Commercial lots of HP exhibit varying degrees of antiproliferative activity on PASMCs that may due to structural differences in the lots. Fractionation of a potent antiproliferative HP preparation into high and low molecular weight components does not alter the antiproliferative effect on PASMCs, suggesting that the size of HP is not the major determinant of this biological activity. The protein core of HP obtained by cleaving the carbohydrate-protein linkage has no growth inhibition on PASMCs, demonstrating that the antiproliferative activity resides in the glycosaminoglycan component. Basic sugar residues of glucosamine can be replaced with another basic sugar, i.e., galactosamine, without affecting growth inhibition of PASMCs. N-sulfonate groups on these sugar residues of HP are not essential for growth inhibition. However, O-sulfonate groups on both sugar residues are essential for the antiproliferative activity on PASMCs. In whole HP, in contrast to an earlier finding based on a synthetic pentasaccharide of HP, 3-O-sulfonation is not critical for the antiproliferative activity against PASMCs. The amounts and distribution of sulfonate groups on both sugar residues of the glycosaminoglycan chain are the major determinant of antiproliferative activity.  相似文献   
103.
104.
Malaria, a leading parasitic killer, is caused by Plasmodium spp. The pathology of the disease starts when Plasmodium merozoites infect erythrocytes to form rings, that matures through a large trophozoite form and develop into schizonts containing multiple merozoites. The number of intra-erythrocytic merozoites is a key-determining factor for multiplication rate of the parasite. Counting of intraerythrocytic merozoites by classical 2-D microscopy method is error prone due to insufficient representation of merozoite in one optical plane of a schizont. Here, we report an alternative 3-D microscopy based automated method for counting of intraerythrocytic merozoites in entire volume of schizont. This method offers a considerable amount of advantages in terms of both, ease and accuracy.  相似文献   
105.
Mitochondrial evolution entailed the origin of protein import machinery that allows nuclear-encoded proteins to be targeted to the organelle, as well as the origin of cleavable N-terminal targeting sequences (NTS) that allow efficient sorting and import of matrix proteins. In hydrogenosomes and mitosomes, reduced forms of mitochondria with reduced proteomes, NTS-independent targeting of matrix proteins is known. Here, we studied the cellular localization of two glycolytic enzymes in the anaerobic pathogen Trichomonas vaginalis: PPi-dependent phosphofructokinase (TvPPi-PFK), which is the main glycolytic PFK activity of the protist, and ATP-dependent PFK (TvATP-PFK), the function of which is less clear. TvPPi-PFK was detected predominantly in the cytosol, as expected, while all four TvATP-PFK paralogues were imported into T. vaginalis hydrogenosomes, although none of them possesses an NTS. The heterologous expression of TvATP-PFK in Saccharomyces cerevisiae revealed an intrinsic capability of the protein to be recognized and imported into yeast mitochondria, whereas yeast ATP-PFK resides in the cytosol. TvATP-PFK consists of only a catalytic domain, similarly to “short” bacterial enzymes, while ScATP-PFK includes an N-terminal extension, a catalytic domain, and a C-terminal regulatory domain. Expression of the catalytic domain of ScATP-PFK and short Escherichia coli ATP-PFK in T. vaginalis resulted in their partial delivery to hydrogenosomes. These results indicate that TvATP-PFK and the homologous ATP-PFKs possess internal structural targeting information that is recognized by the hydrogenosomal import machinery. From an evolutionary perspective, the predisposition of ancient ATP-PFK to be recognized and imported into hydrogenosomes might be a relict from the early phases of organelle evolution.  相似文献   
106.

Background

Elevated serum 1,25-dihydroxyvitamin D (1,25(OH)2D) concentrations have been reported among cohorts of recurrent calcium (Ca) kidney stone-formers and implicated in the pathogenesis of hypercalciuria. Variations in Ca and vitamin D metabolism, and excretion of urinary solutes among first-time male and female Ca stone-formers in the community, however, have not been defined.

Methods

In a 4-year community-based study we measured serum Ca, phosphorus (P), 25-hydroxyvitamin D (25(OH)D), 1,25(OH)2D, 24,25-dihydroxyvitamin D (24,25(OH)2D), parathyroid hormone (PTH), and fibroblast growth factor-23 (FGF-23) concentrations in first-time Ca stone-formers and age- and gender frequency-matched controls.

Results

Serum Ca and 1,25(OH)2D were increased in Ca stone-formers compared to controls (P = 0.01 and P = 0.001). Stone-formers had a lower serum 24,25(OH)2D/25(OH)D ratio compared to controls (P = 0.008). Serum PTH and FGF-23 concentrations were similar in the groups. Urine Ca excretion was similar in the two groups (P = 0.82). In controls, positive associations between serum 25(OH)D and 24,25(OH)2D, FGF-23 and fractional phosphate excretion, and negative associations between serum Ca and PTH, and FGF-23 and 1,25(OH)2D were observed. In SF associations between FGF-23 and fractional phosphate excretion, and FGF-23 and 1,25(OH)2D, were not observed. 1,25(OH)2D concentrations associated more weakly with FGF-23 in SF compared with C (P <0.05).

Conclusions

Quantitative differences in serum Ca and 1,25(OH)2D and reductions in 24-hydroxylation of vitamin D metabolites are present in first-time SF and might contribute to first-time stone risk.  相似文献   
107.

Purpose

Ultrasound (US)-guided high intensity focused ultrasound (HIFU) has been proposed for noninvasive treatment of neuropathic pain and has been investigated in in-vivo studies. However, ultrasound has important limitations regarding treatment guidance and temperature monitoring. Magnetic resonance (MR)-imaging guidance may overcome these limitations and MR-guided HIFU (MR-HIFU) has been used successfully for other clinical indications. The primary purpose of this study was to evaluate the feasibility of utilizing 3D MR neurography to identify and guide ablation of peripheral nerves using a clinical MR-HIFU system.

Methods

Volumetric MR-HIFU was used to induce lesions in the peripheral nerves of the lower limbs in three pigs. Diffusion-prep MR neurography and T1-weighted images were utilized to identify the target, plan treatment and immediate post-treatment evaluation. For each treatment, one 8 or 12 mm diameter treatment cell was used (sonication duration 20 s and 36 s, power 160–300 W). Peripheral nerves were extracted < 3 hours after treatment. Ablation dimensions were calculated from thermal maps, post-contrast MRI and macroscopy. Histological analysis included standard H&E staining, Masson’s trichrome and toluidine blue staining.

Results

All targeted peripheral nerves were identifiable on MR neurography and T1-weighted images and could be accurately ablated with a single exposure of focused ultrasound, with peak temperatures of 60.3 to 85.7°C. The lesion dimensions as measured on MR neurography were similar to the lesion dimensions as measured on CE-T1, thermal dose maps, and macroscopy. Histology indicated major hyperacute peripheral nerve damage, mostly confined to the location targeted for ablation.

Conclusion

Our preliminary results indicate that targeted peripheral nerve ablation is feasible with MR-HIFU. Diffusion-prep 3D MR neurography has potential for guiding therapy procedures where either nerve targeting or avoidance is desired, and may also have potential for post-treatment verification of thermal lesions without contrast injection.  相似文献   
108.
Adenosine-5’-triphosphate (ATP) is an important phosphate metabolite abundantly found in Mycobacterium leprae bacilli. This pathogen does not derive ATP from its host but has its own mechanism for the generation of ATP. Interestingly, this molecule as well as several antigenic proteins act as bio-markers for the detection of leprosy. One such bio-marker is the 18 kDa antigen. This 18 kDa antigen is a small heat shock protein (HSP18) whose molecular chaperone function is believed to help in the growth and survival of the pathogen. But, no evidences of interaction of ATP with HSP18 and its effect on the structure and chaperone function of HSP18 are available in the literature. Here, we report for the first time evidences of “HSP18-ATP” interaction and its consequences on the structure and chaperone function of HSP18. TNP-ATP binding experiment and surface plasmon resonance measurement showed that HSP18 interacts with ATP with a sub-micromolar binding affinity. Comparative sequence alignment between M. leprae HSP18 and αB-crystallin identified the sequence 49KADSLDIDIE58 of HSP18 as the Walker-B ATP binding motif. Molecular docking studies revealed that β4-β8 groove/strands as an ATP interactive region in M. leprae HSP18. ATP perturbs the tertiary structure of HSP18 mildly and makes it less susceptible towards tryptic cleavage. ATP triggers exposure of additional hydrophobic patches at the surface of HSP18 and induces more stability against chemical and thermal denaturation. In vitro aggregation and thermal inactivation assays clearly revealed that ATP enhances the chaperone function of HSP18. Our studies also revealed that the alteration in the chaperone function of HSP18 is reversible and is independent of ATP hydrolysis. As the availability and binding of ATP to HSP18 regulates its chaperone function, this functional inflection may play an important role in the survival of M. leprae in hosts.  相似文献   
109.
Bone is the most common site of breast cancer metastasis. Although it is widely accepted that the microenvironment influences cancer cell behavior, little is known about breast cancer cell properties and behaviors within the native microenvironment of human bone tissue.We have developed approaches to track, quantify and modulate human breast cancer cells within the microenvironment of cultured human bone tissue fragments isolated from discarded femoral heads following total hip replacement surgeries. Using breast cancer cells engineered for luciferase and enhanced green fluorescent protein (EGFP) expression, we are able to reproducibly quantitate migration and proliferation patterns using bioluminescence imaging (BLI), track cell interactions within the bone fragments using fluorescence microscopy, and evaluate breast cells after colonization with flow cytometry. The key advantages of this model include: 1) a native, architecturally intact tissue microenvironment that includes relevant human cell types, and 2) direct access to the microenvironment, which facilitates rapid quantitative and qualitative monitoring and perturbation of breast and bone cell properties, behaviors and interactions. A primary limitation, at present, is the finite viability of the tissue fragments, which confines the window of study to short-term culture. Applications of the model system include studying the basic biology of breast cancer and other bone-seeking malignancies within the metastatic niche, and developing therapeutic strategies to effectively target breast cancer cells in bone tissues.  相似文献   
110.
Adipose-derived stem cells (ASCs) are clinically important in regenerative medicine as they are relatively easy to obtain, are characterized by low morbidity, and can differentiate into myogenic progenitor cells. Although studies have elucidated the principal markers, PAX7, Desmin, MyoD, and MHC, the underlying mechanisms are not completely understood. This motivates the application of computational methods to facilitate greater understanding of such processes. In the following, we present a multi-stage kinetic model comprising a system of ordinary differential equations (ODEs). We sought to model ASC differentiation using data from a static culture, where no strain is applied, and a dynamic culture, where 10% strain is applied. The coefficients of the equations have been modulated by those experimental data points. To correctly represent the trajectories, various switches and a feedback factor based on total cell number have been introduced to better represent the biology of ASC differentiation. Furthermore, the model has then been applied to predict ASC fate for strains different from those used in the experimental conditions and for times longer than the duration of the experiment. Analysis of the results reveals unique characteristics of ASC myogenesis under dynamic conditions of the applied strain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号