首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   8篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   7篇
  2013年   7篇
  2012年   7篇
  2011年   7篇
  2010年   3篇
  2009年   1篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  1993年   1篇
  1985年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
61.
Pathogenesis‐related proteins played a pioneering role 50 years ago in the discovery of plant innate immunity as a set of proteins that accumulated upon pathogen challenge. The most abundant of these proteins, PATHOGENESIS‐RELATED 1 (PR‐1) encodes a small antimicrobial protein that has become, as a marker of plant immune signaling, one of the most referred to plant proteins. The biochemical activity and mode of action of PR‐1 proteins has remained elusive, however. Here, we provide genetic and biochemical evidence for the capacity of PR‐1 proteins to bind sterols, and demonstrate that the inhibitory effect on pathogen growth is caused by the sequestration of sterol from pathogens. In support of our findings, sterol‐auxotroph pathogens such as the oomycete Phytophthora are particularly sensitive to PR‐1, whereas sterol‐prototroph fungal pathogens become highly sensitive only when sterol biosynthesis is compromised. Our results are in line with previous findings showing that plants with enhanced PR‐1 expression are particularly well protected against oomycete pathogens.  相似文献   
62.
63.
64.
Cryopreserved bovine mammary epithelial cells prepared from lactating mammary tissue synthesize and secrete the milk proteins alphas1-casein, lactoferrin (Lf), and alpha-lactalhumin during in vitro culture on collagen gels in serum-free medium. Each milk protein is differently regulated by detachment and thickness of the collagen substratum, fetal calf scrum, and prolactin in the medium. Collagen detachment did not modulate lactoferrin secretion but strongly induced casein secretion, with detachment on day 6 (after formation of cell sheets) inducing casein secretion to 3 μg/ml medium, which was 2–3-fold higher than for cells on collagen detached on day 2 (prior to cell spreading to form sheets), and ten-fold higher than for cells grown on collagen not detached. Alpha-lactalbumin secretion was also induced, but only to low levels, in cells grown on detached but not on attached collagen. Cells grown on thin collagen gels secreted lower levels of lactoferrin and casein compared to cells on thick collagen. Lactoferrin but not casein secretion was increased in cells grown in the presence of fetal calf serum. Casein but not lactoferrin secretion was completely dependent on prolactin. Cells grown serum-free on collagen gels detached on day 6 of culture showed a polarized epithelial cell layer with high differentiation evidenced by the apical microvilli, tight junctions, and fat droplets surrounded by casein-containing secretory vesicles. An underlying layer of myoepithelial-like cells was also evident. These studies show for eryopreserved primary bovine mammary cells prepared from lactating mammary tissue the induction of highly differentiated and polarized cell morphology and ultrastructure with concomitant induction of the secretion of casein, lactoferrin. and alpha-lactalbumin in vitro, and that the non-coordinate regulation of milk protein secretion by substratum, prolactin, and serum likely involves alternate routing and control of secretion pathways for casein and lactoferrin.  相似文献   
65.
Gap junctions (GJ) are required for mammary epithelial differentiation. Using epithelial (SCp2) and myoepithelial-like (SCg6) mouse-derived mammary cells, the role of heterocellular interaction in assembly of GJ complexes and functional differentiation (β-casein expression) was evaluated. Heterocellular interaction is critical for β-casein expression, independent of exogenous basement membrane or cell anchoring substrata. Functional differentiation of SCp2, co-cultured with SCg6, is more sensitive to GJ inhibition relative to homocellular SCp2 cultures differentiated by exogenous basement membrane. Connexin (Cx)32 and Cx43 levels were not regulated across culture conditions; however, GJ functionality was enhanced under differentiation-permissive conditions. Immunoprecipitation studies demonstrated association of junctional complex components (α-catenin, β-catenin and ZO−2) with Cx32 and Cx43, in differentiation conditions, and additionally with Cx30 in heterocellular cultures. Although β-catenin did not shuttle between cadherin and GJ complexes, increased association between connexins and β-catenin in heterocellular cultures was observed. This was concomitant with reduced nuclear β-catenin, suggesting that differentiation in heterocellular cultures involves sequestration of β-catenin in GJ complexes.  相似文献   
66.
Chronic alcohol abuse increases the risk of developing acute lung injury approximately threefold in septic patients, and ethanol ingestion for 6 wk in rats impairs alveolar epithelial barrier function both in vitro and in vivo. Granulocyte/macrophage colony-stimulating factor (GM-CSF) is a trophic factor for the alveolar epithelium, and a recent phase II clinical study suggests that GM-CSF therapy decreases sepsis-mediated lung injury. Therefore, we hypothesized that GM-CSF treatment could improve ethanol-mediated defects in the alveolar epithelium during acute stresses such as endotoxemia. In this study, we determined that recombinant rat GM-CSF improved lung liquid clearance (as reflected by lung tissue wet:dry ratios) in ethanol-fed rats anesthetized and then challenged with 2 ml of saline via a tracheostomy tube. Furthermore, GM-CSF treatment improved lung liquid clearance and decreased epithelial protein leak in both control-fed and ethanol-fed rats after 6 h of endotoxemia induced by Salmonella typhimurium lipopolysaccharide given intraperitoneally, but with the greater net effect seen in the ethanol-fed rats. Our previous studies indicate that chronic ethanol ingestion decreases lung liquid clearance by increasing intercellular permeability. Consistent with this, GM-CSF treatment in vitro decreased permeability of alveolar epithelial monolayers derived from both control-fed and ethanol-fed rats. As in the endotoxemia model in vivo, the effect of GM-CSF was most dramatic in the ethanol group. Together, these results indicate that GM-CSF treatment has previously unrecognized effects in promoting alveolar epithelial barrier integrity and that these salutary effects may be particularly relevant in the setting of chronic alcohol abuse.  相似文献   
67.
Regulatory elements located within an ~28-kb region 3' of the Igh gene cluster (3' regulatory region) are required for class switch recombination and for high levels of IgH expression in plasma cells. We previously defined novel DNase I hypersensitive sites (hs) 5, 6, 7 immediately downstream of this region. The hs 5-7 region (hs5-7) contains a high density of binding sites for CCCTC-binding factor (CTCF), a zinc finger protein associated with mammalian insulator activity, and is an anchor for interactions with CTCF sites flanking the D(H) region. To test the function of hs5-7, we generated mice with an 8-kb deletion encompassing all three hs elements. B cells from hs5-7 knockout (KO) (hs5-7KO) mice showed a modest increase in expression of the nearest downstream gene. In addition, Igh alleles in hs5-7KO mice were in a less contracted configuration compared with wild-type Igh alleles and showed a 2-fold increase in the usage of proximal V(H)7183 gene families. Hs5-7KO mice were essentially indistinguishable from wild-type mice in B cell development, allelic regulation, class switch recombination, and chromosomal looping. We conclude that hs5-7, a high-density CTCF-binding region at the 3' end of the Igh locus, impacts usage of V(H) regions as far as 500 kb away.  相似文献   
68.
Timely classification and identification of bacteria is of vital importance in many areas of public health. We present a mass spectrometry (MS)-based proteomics approach for bacterial classification. In this method, a bacterial proteome database is derived from all potential protein coding open reading frames (ORFs) found in 170 fully sequenced bacterial genomes. Amino acid sequences of tryptic peptides obtained by LC-ESI MS/MS analysis of the digest of bacterial cell extracts are assigned to individual bacterial proteomes in the database. Phylogenetic profiles of these peptides are used to create a matrix of sequence-to-bacterium assignments. These matrixes, viewed as specific assignment bitmaps, are analyzed using statistical tools to reveal the relatedness between a test bacterial sample and the microorganism database. It is shown that, if a sufficient amount of sequence information is obtained from the MS/MS experiments, a bacterial sample can be classified to a strain level by using this proteomics method, leading to its positive identification.  相似文献   
69.
Due to the possibility of a biothreat attack on civilian or military installations, a need exists for technologies that can detect and accurately identify pathogens in a near-real-time approach. One technology potentially capable of meeting these needs is a high-throughput mass spectrometry (MS)-based proteomic approach. This approach utilizes the knowledge of amino acid sequences of peptides derived from the proteolysis of proteins as a basis for reliable bacterial identification. To evaluate this approach, the tryptic digest peptides generated from double-blind biological samples containing either a single bacterium or a mixture of bacteria were analyzed using liquid chromatography-tandem mass spectrometry. Bioinformatic tools that provide bacterial classification were used to evaluate the proteomic approach. Results showed that bacteria in all of the double-blind samples were accurately identified with no false-positive assignment. The MS proteomic approach showed strain-level discrimination for the various bacteria employed. The approach also characterized double-blind bacterial samples to the respective genus, species, and strain levels when the experimental organism was not in the database due to its genome not having been sequenced. One experimental sample did not have its genome sequenced, and the peptide experimental record was added to the virtual bacterial proteome database. A replicate analysis identified the sample to the peptide experimental record stored in the database. The MS proteomic approach proved capable of identifying and classifying organisms within a microbial mixture.The detection and accurate identification of pathogens of biological origin are of great importance to the armed forces and civilian sectors. Achieving these tasks is vital in the response to manmade or natural biothreat attacks in a proper and efficient manner to minimize the outbreak of epidemic cases. Several approaches reported in the literature have addressed the detection and identification of microorganisms based on the characterization of metabolites (1, 17) and genomic contents of bacterial cells (16). In these studies, the genomic sequence similarities generated from PCR were used to group bacteria at the genus/species level (27). Prior knowledge of the sample, or the targeting of one or a group of biological substances, is required in PCR techniques for proper primer utilization. However, proteins constitute greater than 60% of the dry weight of microorganism cellular components (4, 8, 12, 13, 22) and could provide in-depth information for the bacterial differentiation of species and their strains. Moreover, advancements in mass spectrometry (MS) ionization, detection methods, and data processing make MS a suitable analytical technique for the differentiation of microorganisms (5-7).Using MS techniques for bacterial differentiation relies on the comparison of the proteomic information generated from the analysis of either intact protein profiles (top down) or the product ion mass spectra of digested peptide sequences (bottom up) (24, 26). For top-down analysis, bacterial differentiation is accomplished through the comparison of the MS data of intact proteins to those of an experimental mass spectral database containing the mass spectral fingerprints of the studied microorganisms (6, 7). Conversely, bacterial differentiation using the product ion mass spectral data of digested peptide sequences is accomplished through the utilization of search engines for publicly available sequence databases to infer identification (25, 29). Several peptide-searching algorithms (i.e., SEQUEST and MASCOT) have been developed to address peptide identification using proteomics databases that were generated from either fully or partially genome-sequenced organisms (6, 11, 19). Thus, our approach is based on a cross-correlation between the generated product ion mass spectra of tryptic peptides and their corresponding bacterial proteins resident in an in-house comprehensive proteome database from online databases of the sequences of microorganism genomes (30).Recent developments in the microbial differentiation field have focused on improving the selectivity of MS data processing. The product ion mass spectrum-SEQUEST approach was reported for the identification of specific bacteria using a custom-made, limited database of sequences (14, 23). Another approach used open reading frame (ORF) translator programs to predict possible protein sequences from all probable ORFs and correlate them with the genomic sequences to establish an identification of microorganisms (5). This approach did not show advantages over the product ion mass spectrum method with regard to strain level discrimination (28). However, a recent advancement in proteomic approaches to bacterial differentiation reported a hybrid approach combining protein profiling and sequence database searching using accurate mass tags (15, 18). This approach was used to probe defined mixtures of bacteria to evaluate its capabilities.Alternatively, our approach is based on a cross-correlation between the product ion spectra of the tryptic peptides and their corresponding bacterial proteins derived from an in-house comprehensive proteome database from genome-sequenced microorganisms (9, 10). The exploitation of this proteome database approach allowed for a faster search of the product ion spectra than that using genomic database searching. Also, it eliminates inconsistencies observed in publicly available protein databases due to the utilization of nonstandardized gene-finding programs during the process of constructing the proteome database. The proposed approach uses an ensemble of bioinformatic tools for the classification and potential identification of bacteria based on the peptide sequence information. This information is generated from the liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis of tryptic digests of bacterial protein extracts and the subsequent profiling of the sequenced peptides to create a matrix of sequence-to-bacterium (STB) assignments. This proteomic approach is an unsupervised approach to reveal the relatedness between the analyzed samples and the database of microorganisms using a binary matrix approach. The binary matrix is analyzed using diverse visualization and multivariate statistical techniques for bacterial classification and identification.This study investigated the capability of the aforementioned MS-based proteomic approach to identify biological agents using double-blind (hereafter referred to as blind) samples that consisted of various microorganisms of interest to civilian and military installations. The present study included category A biological agents, mixtures of organisms, and negative controls without prior knowledge of the identity of the microorganisms. The in-house database consists of 881 microbial genomes as of 2 May 2009. The identification process for all samples revealed that several samples consisted of a mixture of bacterial species. The results of the blind studies showed a promising outlook for applying this MS-based proteomic approach to the classification of unknown bacterial mixtures at the species and strain level depending on the availability of complete genome sequences.  相似文献   
70.
Hereditary hemochromatosis is a genetic disease that progresses silently. This disease is often diagnosed late when complications appear. Hypogonadotropic hypogonadism (HH) is one of the classical complications of hemochromatosis. Its frequency is declining probably because of earlier diagnosis and better informed physicians. Certain symptoms linked to HH can have an impact on a patient’s sexuality, such as decreased libido, erectile dysfunction, and impairment of ejaculation, as well as on his reproductive capacities.This review is based on an online search in English, French and German language publications found in PubMed/Medline, up to 23 September 2016 using the following key word: Male infertility, Hypogonadotropic Hypogonadism, Hereditary Hemochromatosis.Thirty-four papers met these inclusion criteria. This review describes the impact of iron overload on male fertility, resulting in hypogonadotropic hypogonadism and proposes treatment modalities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号