首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preparation, cryopreservation, and culture on type I collagen gels of lactating bovine mammary cells with prolonged milk protein synthesis and secretion in vitro is described. Cryopreserved cells prepared as acinar fragments from either lactating or developing mammary glands attached to the collagen substratum within 24-48 hr after plating in serum and hormone supplemented medium. During continued culture in hormone-supplemented (insulin, cortisol, and prolactin) serum-free medium outgrowth of cells from the attached acinar fragments was observed beginning on day 2, with continued outgrowth to near confluence by day 6. Two morphologically distinct cell types were evident; initial outgrowth was by large polygonal cells that were subsequently overlain by spindle-shaped cells. Cells from both lactating and developing mammary glands sustained substantial milk protein secretion for at least 14 days in culture. Alpha S1-casein synthesis and secretion in cultures of lactating mammary cells was dependent on a critical minimum cell population density, below which alpha S1-casein was not secreted. In contrast, lactoferrin (LF) secretion into the medium increased linearly with the increase in cell population density. Cells cryopreserved up to 16 months secreted LF at levels comparable to fresh cultures of the same cells.  相似文献   

2.
3.
4.
5.
6.
Summary Milk protein gene expression was studied in cell subpopulations of 7,12-dimethylbenz(a)anthracene-induced rat mammary carcinoma cells enriched or depleted for casein production grown on attached collagen gels. Culture of these cells in the presence of 10% fetal bovine serum, insulin (5 μg/ml), hydrocortisone (10 μg/ml), and prolactin (5 μg/ml) maintained α-, β-, and γ-casein and whey acidic protein mRNAs at levels identical to cells isolated from perphenazine-treated rats. Whey acidic protein mRNA levels in the tumor cells relative to the 14-d lactating gland were greater than those of the casein mRNAs. Withdrawal of prolactin from the casein-producing cells resulted in the loss of all four milk protein mRNAs. Subsequent addition of prolactin to the withdrawn cells caused a rapid accumulation of these mRNAs to prewithdrawal levels. Milk protein gene expression in this tumor cell subpopulation is modulated by prolactin (in the presence of insulin and hydrocortisone) in a similar manner to that observed in the normal mammary gland when these tumor cells are cultured on attached collagen gels. This work was supported by National Institutes of Health grant CA 16303. M. L. Johnson was the recipient of NIH Fellowship, HD 06157.  相似文献   

7.
We examined the role of cell shape, cytodifferentiation, and tissue topography on the induction and maintenance of functional differentiation in rabbit mammary cells grown as primary cultures on two-dimensional collagen surfaces or in three-dimensional collagen matrices. Mammary glands from mid-pregnant rabbits were dissociated into single cells, and epithelial cells were enriched by isopycnic centrifugation. Small spheroids of epithelial cells (approximately 50 cells) that formed on a rotary shaker were plated on or embedded in collagen gels. The cells were cultured for 1 d in serum-containing medium and then for up to 25 d in chemically defined medium. In some experiments, epithelial monolayers on gels were mechanically freed from the dishes on day 2 or 5. These gels retracted and formed floating collagen gels. On attached collagen gels, flat monolayers of a single cell type developed within a few days. The cells synthesized DNA until the achievement of confluence but did not accumulate milk proteins. No morphological changes were induced by prolactin (PRL). On floating gels, two cell types appeared in the absence of cell proliferation. The cells in direct contact with the medium became cuboidal and developed intracellular organelles typical of secretory cells. PRL-induced lipogenesis, resulting in large fat droplets filling the apical cytoplasm and accumulation of casein and α-lactalbumin in vesicles surrounding the fat droplets. We detected tranferrin in the presence or absence of PRL intracellularly in small vesicles but also in the collagen matrix in contact with the cell layer. The second cell type, rich in microfilaments and reminiscent of the myoepithelial cells, was situated between the secretory cell layer and the collagen matrix. In embedding gels, the cells formed hollow ductlike structures, which grew continuously in size. Secretory cells formed typical lumina distended by secretory products. We found few microfilament-rich cells in contact with the collagen gels. Storage and secretion of fat, caseins and alpha-lactalbumin required the presence of PRL, whereas the accumulation and vectorial discharge of transferrin was prolactin independent. There was no differentiation gradient between the tip and the cent of the outgrowth, since DNA synthesis and milk protein storage were random along the tubular structures. These results indicate that establishment of functional polarity and induction of cytodifferentiation are influenced by the nature of the interaction of the cells with the collagen structure. The morphological differentiation in turn plays an important role in the synthesis, storage, and secretion of fat and milk proteins.  相似文献   

8.
Summary Cultured mammary cells depend on interaction with a substratum for functional differentiation, even in the presence of lactogenic hormones. Protein synthesis and secretion by mouse mammary epithelial cells on floating collagen gels and (EHS) matrix were compared. Cells were prepared by collagenase digestion of tissue from mid-pregnant mice. Protein synthesis was consistently greater in cells attached to EHS matrix, and was associated with proportionately higher rates of protein secretion into culture medium. Cells on EHS secreted protein into a luminal space formed within multicellular alveoluslike structures. Luminal secreted protein, extracted by EGTA treatment of cells in situ, constituted up to 40% of total secreted radiolabeled protein for cells on EHS matrix. The EGTA extract contained a higher proportion of casein and lactoferrin, whereas transferrin was predominately in the medium. This indicated that cells on EHS matrix had become polarized and were secreting proteins vectorially. In contrast, EGTA treatment of cells on floating collagen gels released virtually no radiolabeled protein, showing that mammosphere formation was a property of cells on EHS. These biochemical observations were supported by ultrastructural evidence. In EHS cultures, the proportion of secreted protein in the luminal fraction, but not the distribution of secreted proteins, changed with time. This suggests that there may be leakage out of the lumen, or intraluminal degradation of protein after secretion. Nevertheless, the results suggest that cellular organization into mammospheres on EHS matrix promotes synthetic and secretory activity. This system provides a useful model for investigation of the regulation of milk secretion.  相似文献   

9.
Amino acid incorporation experiments show that epithelial cells from lactating mouse mammary glands and from collagen gel culture both synthesize and secrete four principal phosphocaseins (p45, p40, p27, and p23 kD). In both cases, however, the casein production is largely dominated by the p27 species. The average percentage distribution of the above casein species in medium from cultured epithelia is approximately 13%, 6%, 68%, and 14%, respectively; for milk the distribution is approximately 23%, 7%, 54%, and 16%. The predominance of the p27 species is not a consequence of extensive extracellular differential degradation of the secreted caseins since no significant casein degradation was observed in culture medium, either in contact or isolated from epithelial cell monolayers. Synthesis and secretion of all the caseins by cultured epithelia is dependent upon insulin, prolactin, and hydrocortisone. Presumably some intracellular events result in the secretion of p27 as the principal casein in mouse milk. Apparently, some selection factor(s) operate to make p27 a major nitrogenous nutritional component for a newborn mouse. In addition, on a quantitative basis, the relative levels of various caseins secreted by epithelia from lactating mammary glands is essentially duplicated by epithelia in collagen gel culture.  相似文献   

10.
We examined the responsiveness to prolactin and growth hormone of mammary epithelial cells from mice exposed neonatally to diethylstilbestrol (DES) and from control mice. The mammary epithelial cells were cultured inside collagen gels with serum-free medium containing insulin, epidermal growth factor, and linoleic acid. This produces prolactin-sensitive cells with low levels of casein production, as measured in cellular homogenates with a specific enzyme-linked immunosorbent assay for alpha-casein. The collagen gels containing these cells were then released and the medium supplements changed to insulin, linoleic acid, and prolactin at concentrations from 10 to 1000 ng/ml and growth hormone at 0, 10, or 100 ng/ml. This second phase of the culture, the differentiation phase, allows the cells to accumulate casein if they have this capacity. When cultured with prolactin only (no growth hormone), the cells from DES-exposed mice consistently accumulated 50-100% of the casein content of normal cells, but never more. Growth hormone, when added to prolactin-containing medium, increased casein accumulation above the levels seen with prolactin alone. Combinations of prolactin and growth hormone enhanced the difference between casein accumulation in DES-exposed and control cells, and DES-exposed cells were much less responsive to growth hormone. In our studies, the isolated mammary epithelial cells of estrogen-exposed mice are not more sensitive to prolactin than cells from normal animals as previous reports reports had suggested, but rather are generally less sensitive to hormonal stimulants.  相似文献   

11.
Mouse mammary epithelial cells cultivated on floating collagen gels secrete, as judged by immunoblotting, the full array of caseins found in mouse milk. The secreted caseins are all phosphorylated and have estimated minimum molecular weights (MWs) of 45, 40, 27, and 23 kD in SDS-PAGE. Intracellular caseins of epithelia from collagen gel cultivation or from lactating mammary glands are a combination of mature caseins identical with the secreted molecules and novel caseins whose apparent size in SDS-PAGE is different from the secreted molecules. The novel caseins were shown to be non-phosphorylated species apparently insufficiently mature for secretion. Our data indicate that, with regard to casein expression, cultivation of mouse mammary epithelia on collagen gels essentially duplicates their behavior in the lactating mouse mammary glands.  相似文献   

12.
TGF-beta at concentrations in the range from 0.1 to 10 ng/ml gave significant growth inhibition of nonmalignant human mammary epithelial cells (HMEC) but not of malignant HMEC grown in monolayer cultures in serum-free medium. However, no growth inhibition of the nonmalignant cells was observed when the cells were cultivated within a type-I collagen gel matrix either adhering to a plastic substratum or floating on the medium. Within floating collagen gels, both nonmalignant and malignant HMEC formed a cell mass having radial extensions, and TGF-beta at 1 or 10 ng/ml prevented the formation of extensions only in the nonmalignant HMEC.  相似文献   

13.
V N Katiyar  J Enami  S Nandi 《In vitro》1978,14(9):771-774
The in vitro effects of protein hormones on the stimulation of casein secretion by mouse mammary epithelial cells were studied. Mouse mammary glands were enzymatically dissociated and used immediately or were stored frozen and thawed just before use. Cells were cultured on floating collagen gels in the presence of insulin, cortisol and a pituitary or placental polypeptide hormone. Casein, released into the medium, was assayed by a radioimmunoassay against one of the components of mouse casein. Mammary cells released casein into the medium in the presence of as little as 10 ng of ovine prolactin per ml of medium. Human growth hormone stimulated the casein secretion to the same extent as prolactin. Human placental lactogen, ovine and bovine growth hormones were less stimulatory. Luteinizing hormone, follicle-stimulating hormone and thyroid-stimulating hormone had no effect on the stimulation of casein secretion.  相似文献   

14.
Bovine mammary epithelial cells (bMECs) synthesize lactoferrin, which is secreted into milk. Our results suggest that prolactin stimulated secretion of lactoferrin in primary bMECs and their clonal cell line under serum-free conditions. Prolactin also stimulated mRNA expression of lactoferrin in the clonal cell line. This effect was reduced by AG-490, suggesting that the prolactin-stimulated mRNA expression of lactoferrin was mediated by Janus kinase (JAK)2.  相似文献   

15.
Mouse glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1), also known as mC26 and homologous to bovine PP3, is a milk protein synthesized in the mammary gland. Several studies have investigated the regulation of casein, the major milk protein, gene in the mammary gland, but little is known about GlyCAM-1. Here we examined GlyCAM-1 gene expression in mouse mammary epithelial cells. First, we detected GlyCAM-1 expression in mammary epithelial cells in situ by immunohistochemistry; almost all mammary epithelial cells of the lactating mouse expressed GlyCAM-1. Second, mammary epithelial cells were digested with collagenase and cultured with insulin, prolactin and/or glucocorticoid. alpha-Casein and beta-casein genes were expressed following treatment with insulin, prolactin and glucocorticoid. In contrast, GlyCAM-1 expression could not be detected with any combination of these three hormones. We also analyzed changes in the levels of GlyCAM-1 and caseins mRNAs in cultured cells. The addition of hormones to the culture medium increased casein mRNAs, but surprisingly reduced GlyCAM-1 mRNA. Our results suggest that the mechanisms that regulate GlyCAM-1 gene in mammary cells of lactating mice are different from those involved in the regulation of casein genes.  相似文献   

16.
The hallmark of differentiated mammary epithelial cells is a copious secretion of milk-specific components regulated by lactogenic hormones. We describe an established clonal cell line produced from primary bovine mammary alveolar cells (MAC-T) by stable transfection with SV-40 large T-antigen. MAC-T cells show a population doubling time of approximately 17 h and have been cultured more than 350 passages without showing any sign of senescence. They show the characteristic “cobblestone” morphology of epithelial cells when grown on plastic substratum. Differentiation was induced by augmenting cell-cell interaction on a floating collagen gel in the presence of prolactin. The differentiated phenotype was characterized to include (1) increased abundance in β-casein mRNA, (2) increased number and size of indirect immunofluorescent casein secretory vesicles in each cell and (3) αs- and β-casein protein secretion. The clonal nature of the cells, their immortality, and their ability to uniformly differentiate and secrete casein proteins make this cell line unique.  相似文献   

17.
Summary The in vitro effects of protein hormones on the stimulation of casein secretion by mouse mammary epithelial cells were studied. Mouse mammary glands were enzymatically dissociated and used immediately or were stored frozen and thawed just before use. Cells were cultured on floating collagen gels in the presence of insulin, cortisol and a pituitary or placental polypeptide hormone. Casein, released into the medium, was assayed by a radioimmunoassay against one of the components of mouse casein. Mammary cells released casein into the medium in the presence of as little as 10 ng of ovine prolactin per ml of medium. Human growth hormone stimulated the casein secretion to the same extent as prolactin. Human placental lactogen, ovine and bovine growth hormones were less stimulatory. Luteinizing hormone, follicle-stimulating hormone and thyroid-stimulating hormone had no effect on the stimulation of casein secretion. This investigation was supported by Grant No. CA 05388 awarded by the National Cancer Institute, DHEW, and by Cancer Research Funds of the University of California.  相似文献   

18.
The hallmark of differentiated mammary epithelial cells is a copious secretion of milk-specific components regulated by lactogenic hormones. We describe an established clonal cell line produced from primary bovine mammary alveolar cells (MAC-T) by stable transfection with SV-40 large T-antigen. MAC-T cells show a population doubling time of approximately 17 h and have been cultured more than 350 passages without showing any sign of senescence. They show the characteristic "cobblestone" morphology of epithelial cells when grown on plastic substratum. Differentiation was induced by augmenting cell-cell interaction on a floating collagen gel in the presence of prolactin. The differentiated phenotype was characterized to include (1) increased abundance in beta-casein mRNA, (2) increased number and size of indirect immunofluorescent casein secretory vesicles in each cell and (3) alpha s- and beta-casein protein secretion. The clonal nature of the cells, their immortality, and their ability to uniformly differentiate and secrete casein proteins make this cell line unique.  相似文献   

19.
It has been shown previously that cultures of mouse mammary epithelial cells retain their characteristic morphology and their ability to produce gamma-casein, a member of the casein gene family, only if they are maintained on floating collagen gels (Emerman, J.T., and D.R. Pitelka, 1977, In Vitro, 13:316-328). In this paper we show: (a) Cells on floating collagen gels secrete not only gamma-casein but also alpha 1-, alpha 2-, and beta-caseins. These are not secreted by cells on plastic and are secreted to only a very limited extent by cells on attached collagen gels. (b) The floating collagen gel regulates at the level of synthesis and/or stabilization of the caseins rather than at the level of secretion alone. Contraction of the floating gel is important in that cells cultured on floating glutaraldehyde cross- linked gels do not secrete any of the caseins. (c) The secretion of an 80,000-mol-wt protein, most probably transferrin, and a 67,000-mol-wt protein, probably butyrophilin, a major protein of the milk fat globule membrane are partially modulated by substrata. However, in contrast to the caseins, these are always detectable in media from cells cultured on plastic and attached gels. (d) Whey acidic protein, a major whey protein, is actively secreted by freshly isolated cells but is secreted in extremely limited quantities in cultured cells regardless of the nature of the substratum used. alpha-Lactalbumin secretion is also decreased significantly in cultured cells. (e) A previously unreported set of proteins, which may be minor milk proteins, are prominently secreted by the mammary cells on all substrata tested. We conclude that while the substratum profoundly influences the secretion of the caseins, it does not regulate the expression of every milk-specific protein in the same way. The mechanistic implications of these findings are discussed.  相似文献   

20.
Parathyroid hormone-related protein (PTHrP) is a major cause of humoral hypercalcemia of malignancy, but has also been widely found in fetal and adult non-neoplastic tissues. Lactating mammary gland has been shown to produce large amounts of PTHrP, and high levels of PTHrP have been measured in milk. We have examined the influences of several substances on the secretion of two different forms of PTHrP by primary cultures of mammary cells isolated from lactating rats to examine the regulatory mechanisms of PTHrP production by mammary cells. Primary cultures of mammary cells seeded at a density of 10(5) cells per 35 mm culture dish were grown on collagen gels. First, after cells were left 24 hours for attachment and incubated in 2 % FCS containing medium with for 12 hours, PTHrP (1 - 87) secretions were measured in conditioned medium with hormone supplementation for 1, 24 and 48 hours. Progesterone (10(-7) - 10(-5) mol/l) significantly suppressed PTHrP (1 - 87) secretion in a dose-dependent manner (p < 0.01), while 17beta-estradiol had no influence on PTHrP (1 - 87) secretion. Prolactin, a known stimulator of PTHrP expression in vivo, had no effect in this in vitro model. Second, PTHrP (1 - 34) secretion levels from confluent lactating mammary cells for 24 hours were evaluated. The same results were obtained in the case of PTHrP (1 - 87) secretion from non-confluent cells. Furthermore, dexamethasone (10(-6) mol/l) significantly suppressed PTHrP (1 - 34) secretion (p < 0.01). These results suggest that PTHrP production from the lactating mammary gland is suppressed by progesterone as well as dexamethasone. Progesterone dramatically falls after delivery, thus possibly accelerating PTHrP production by lactating mammary glands and resulting in considerable amounts of PTHrP secreted into the milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号