首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4618篇
  免费   313篇
  国内免费   302篇
  2024年   4篇
  2023年   60篇
  2022年   85篇
  2021年   238篇
  2020年   153篇
  2019年   185篇
  2018年   186篇
  2017年   140篇
  2016年   201篇
  2015年   260篇
  2014年   338篇
  2013年   368篇
  2012年   411篇
  2011年   347篇
  2010年   228篇
  2009年   211篇
  2008年   232篇
  2007年   166篇
  2006年   161篇
  2005年   159篇
  2004年   155篇
  2003年   146篇
  2002年   104篇
  2001年   118篇
  2000年   83篇
  1999年   95篇
  1998年   46篇
  1997年   33篇
  1996年   36篇
  1995年   34篇
  1994年   30篇
  1993年   18篇
  1992年   28篇
  1991年   22篇
  1990年   31篇
  1989年   8篇
  1988年   17篇
  1987年   12篇
  1986年   9篇
  1985年   8篇
  1984年   10篇
  1983年   8篇
  1982年   7篇
  1981年   5篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1975年   6篇
  1974年   3篇
排序方式: 共有5233条查询结果,搜索用时 267 毫秒
121.
Genetic linkage maps are indispensable tools in genetic, genomic and breeding studies. As one of genotyping-by-sequencing methods, RAD-Seq (restriction-site associated DNA sequencing) has gained particular popularity for construction of high-density linkage maps. Current RAD analytical tools are being predominantly used for typing codominant markers. However, no genotyping algorithm has been developed for dominant markers (resulting from recognition site disruption). Given their abundance in eukaryotic genomes, utilization of dominant markers would greatly diminish the extensive sequencing effort required for large-scale marker development. In this study, we established, for the first time, a novel statistical framework for de novo dominant genotyping in mapping populations. An integrated package called RADtyping was developed by incorporating both de novo codominant and dominant genotyping algorithms. We demonstrated the superb performance of RADtyping in achieving remarkably high genotyping accuracy based on simulated and real mapping datasets. The RADtyping package is freely available at http://www2.ouc.edu.cn/mollusk/ detailen.asp?id=727.  相似文献   
122.
123.
124.
Rapid mechanical deformation of cells has emerged as a promising, vector-free method for intracellular delivery of macromolecules and nanomaterials. This technology has shown potential in addressing previously challenging applications; including, delivery to primary immune cells, cell reprogramming, carbon nanotube, and quantum dot delivery. This vector-free microfluidic platform relies on mechanical disruption of the cell membrane to facilitate cytosolic delivery of the target material. Herein, we describe the detailed method of use for these microfluidic devices including, device assembly, cell preparation, and system operation. This delivery approach requires a brief optimization of device type and operating conditions for previously unreported applications. The provided instructions are generalizable to most cell types and delivery materials as this system does not require specialized buffers or chemical modification/conjugation steps. This work also provides recommendations on how to improve device performance and trouble-shoot potential issues related to clogging, low delivery efficiencies, and cell viability.  相似文献   
125.
Paroxysmal dyskinesias (PDs) are a group of episodic movement disorders with marked variability in clinical manifestation and potential association with epilepsy. PRRT2 has been identified as a causative gene for PDs, but the phenotypes and inheritance patterns of PRRT2 mutations need further clarification. In this study, 10 familial and 21 sporadic cases with PDs and PDs‐related phenotypes were collected. Genomic DNA was screened for PRRT2 mutations by direct sequencing. Seven PRRT2 mutations were identified in nine (90.0%) familial cases and in six (28.6%) sporadic cases. Five mutations are novel: two missense mutations (c.647C>G/p.Pro216Arg and c.872C>T/p.Ala291Val) and three truncating mutations (c.117delA/p.Val41TyrfsX49, c.510dupT/p.Leu171SerfsX3 and c.579dupA/p.Glu194ArgfsX6). Autosomal dominant inheritance with incomplete penetrance was observed in most of the familial cases. In the sporadic cases, inheritance was heterogeneous including recessive inheritance with compound heterozygous mutations, inherited mutations with incomplete parental penetrance and de novo mutation. Variant phenotypes associated with PRRT2 mutations, found in 36.0% of the affected cases, included febrile convulsions, epilepsy, infantile non‐convulsive seizures (INCS) and nocturnal convulsions (NC). All patients with INCS or NC, not reported previously, displayed abnormalities on electroencephalogram (EEG). No EEG abnormalities were recorded in patients with classical infantile convulsions and paroxysmal choreoathetosis (ICCA)/paroxysmal kinesigenic dyskinesia (PKD). Our study further confirms that PRRT2 mutations are the most common cause of familial PDs, displaying both dominant and recessive inheritance. Epilepsy may occasionally occur in ICCA/PKD patients with PRRT2 mutations. Variant phenotypes INCS or NC differ from classical ICCA/PKD clinically and electroencephalographically. They have some similarities with, but not identical to epilepsy, possibly represent an overlap between ICCA/PKD and epilepsy .  相似文献   
126.
127.
Recently, it has been suggested that C2ORF40 is a candidate tumor suppressor gene in breast cancer. However, the mechanism for reduced expression of C2ORF40 and its functional role in breast cancers remain unclear. Here we show that C2ORF40 is frequently silenced in human primary breast cancers and cell lines through promoter hypermethylation. C2ORF40 mRNA level is significantly associated with patient disease-free survival and distant cancer metastasis. Overexpression of C2ORF40 inhibits breast cancer cell proliferation, migration and invasion. By contrast, silencing C2ORF40 expression promotes these biological phenotypes. Bioinformatics and FACS analysis reveal C2ORF40 functions at G2/M phase by downregulation of mitotic genes expression, including UBE2C. Our results suggest that C2ORF40 acts as a tumor suppressor gene in breast cancer pathogenesis and progression and is a candidate prognostic marker for this disease.  相似文献   
128.
Traumatic brain injury (TBI) triggers a complex series of neurochemical and signaling changes that lead to neuronal dysfunction and overreactive astrocytes. In the current study, we showed that interactions between SCYL1-bp1 and Pirh2 are involved in central nervous system (CNS) injury and repair. Western blot and immunohistochemical analysis of an acute traumatic brain injury model in adult rats revealed significantly increased levels of SCYL1-bp1 and Pirh2 in the ipsilateral brain cortex, compared to contralateral cerebral cortex. Immunofluorescence double-labeling analyses further revealed that SCYL1-bp1 is mainly co-expressed with NeuN. Terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling staining data supported the involvement of SCYL1-bp1 and Pirh2 in neuronal apoptosis after brain injury. We additionally examined the expression profiles of active caspase-3, which were altered in correlation with the levels of SCYL1-bp1 and Pirh2. Notably, both SCYL1-bp1 and Pirh2 were colocalized with active caspase-3, and all three proteins participated in neuronal apoptosis. Immunoprecipitation experiments further revealed interactions of these proteins with each other in the pathophysiology process. To our knowledge, this is the first study to report interactions between SCYL1-bp1 and Pirh2 in traumatic brain. Our data collectively indicate that SCYL1-bp1 and Pirh2 play important roles in CNS pathophysiology after TBI.  相似文献   
129.
IL-23 regulates myriad processes in the innate and adaptive immune systems, and is a critical mediator of the proinflammatory effects exerted by Th17 cells in many diseases. In this study, we investigated whether and how hepatitis B virus (HBV) causes liver damage directly through the IL-23 signaling pathway. In biopsied liver tissues from HBV-infected patients, expression of both IL-23 and IL-23R was remarkably elevated. In vivo observations also indicated that the main sources of IL-23 were myeloid dendritic cells (mDCs) and macrophages. Analysis of in vitro differentiated immature DCs and macrophages isolated from healthy donors revealed that the HBV surface antigen (HBsAg) efficiently induces IL-23 secretion in a mannose receptor (MR)-dependent manner. Culture with an endosomal acidification inhibitor and the dynamin inhibitor showed that, upon binding to the MR, the HBsAg is taken up by mDCs and macrophages through an endocytosis mechanism. In contrast, although the HBV core antigen (HBcAg) can also stimulate IL-23 secretion from mDCs, the process was MR- and endocytosis-independent. In addition, IL-23 was shown to be indispensible for HBsAg-stimulated differentiation of naïve CD4+ T cells into Th17 cells, which were determined to be the primary source of IL-17 in HBV-infected livers. The cognate receptor, IL-17R, was found to exist on the hepatic stellate cells and mDCs, both of which might represent the potential target cells of IL-17 in hepatitis B disease. These data provide novel insights into a yet unrecognized mechanism of HBV-induced hepatitis, by which increases in IL-23 expression, through an MR/endocytosis-dependent or -independent manner, produce liver damage through the IL-23/IL-17 axis.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号