首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2652篇
  免费   170篇
  2023年   11篇
  2022年   12篇
  2021年   41篇
  2020年   28篇
  2019年   34篇
  2018年   52篇
  2017年   43篇
  2016年   85篇
  2015年   126篇
  2014年   145篇
  2013年   167篇
  2012年   238篇
  2011年   219篇
  2010年   134篇
  2009年   117篇
  2008年   179篇
  2007年   155篇
  2006年   132篇
  2005年   138篇
  2004年   127篇
  2003年   130篇
  2002年   104篇
  2001年   45篇
  2000年   34篇
  1999年   30篇
  1998年   38篇
  1997年   27篇
  1996年   28篇
  1995年   20篇
  1994年   21篇
  1993年   26篇
  1992年   25篇
  1991年   14篇
  1990年   13篇
  1989年   8篇
  1988年   6篇
  1987年   6篇
  1986年   4篇
  1985年   11篇
  1984年   6篇
  1983年   7篇
  1982年   2篇
  1981年   6篇
  1980年   2篇
  1979年   2篇
  1977年   4篇
  1976年   4篇
  1974年   3篇
  1972年   2篇
  1965年   3篇
排序方式: 共有2822条查询结果,搜索用时 312 毫秒
41.
During the most recent decade, environmental DNA metabarcoding approaches have been both developed and improved to minimize the biological and technical biases in these protocols. However, challenges remain, notably those relating to primer design. In the current study, we comprehensively assessed the performance of ten COI and two 16S primer pairs for eDNA metabarcoding, including novel and previously published primers. We used a combined approach of in silico, in vivo‐mock community (33 arthropod taxa from 16 orders), and guano‐based analyses to identify primer sets that would maximize arthropod detection and taxonomic identification, successfully identify the predator (bat) species, and minimize the time and financial costs of the experiment. We focused on two insectivorous bat species that live together in mixed colonies: the greater horseshoe bat (Rhinolophus ferrumequinum) and Geoffroy's bat (Myotis emarginatus). We found that primer degeneracy is the main factor that influences arthropod detection in silico and mock community analyses, while amplicon length is critical for the detection of arthropods from degraded DNA samples. Our guano‐based results highlight the importance of detecting and identifying both predator and prey, as guano samples can be contaminated by other insectivorous species. Moreover, we demonstrate that amplifying bat DNA does not reduce the primers' capacity to detect arthropods. We therefore recommend the simultaneous identification of predator and prey. Finally, our results suggest that up to one‐third of prey occurrences may be unreliable and are probably not of primary interest in diet studies, which may decrease the relevance of combining several primer sets instead of using a single efficient one. In conclusion, this study provides a pragmatic framework for eDNA primer selection with respect to scientific and methodological constraints.  相似文献   
42.
43.
44.

Background

Trypanosoma cruzi, the causative agent of Chagas disease, displays significant genetic variability revealed by six Discrete Typing Units (TcI-TcVI). In this pathology, oral transmission represents an emerging epidemiological scenario where different outbreaks associated to food/beverages consumption have been reported in Argentina, Bolivia, Brazil, Ecuador and Venezuela. In Colombia, six human oral outbreaks have been reported corroborating the importance of this transmission route. Molecular epidemiology of oral outbreaks is barely known observing the incrimination of TcI, TcII, TcIV and TcV genotypes.

Methodology and Principal Findings

High-throughput molecular characterization was conducted performing MLMT (Multilocus Microsatellite Typing) and mtMLST (mitochondrial Multilocus Sequence Typing) strategies on 50 clones from ten isolates. Results allowed observing the occurrence of TcI, TcIV and mixed infection of distinct TcI genotypes. Thus, a majority of specific mitochondrial haplotypes and allelic multilocus genotypes associated to the sylvatic cycle of transmission were detected in the dataset with the foreseen presence of mitochondrial haplotypes and allelic multilocus genotypes associated to the domestic cycle of transmission.

Conclusions

These findings suggest the incrimination of sylvatic genotypes in the oral outbreaks occurred in Colombia. We observed patterns of super-infection and/or co-infection with a tailored association with the severe forms of myocarditis in the acute phase of the disease. The transmission dynamics of this infection route based on molecular epidemiology evidence was unraveled and the clinical and biological implications are discussed.  相似文献   
45.
46.
Mesothelial-to-mesenchymal transition (MMT) is an auto-regulated physiological process of tissue repair that in uncontrolled conditions such as peritoneal dialysis (PD) can lead to peritoneal fibrosis. The maximum expression of peritoneal fibrosis induced by PD fluids and other peritoneal processes is the encapsulating peritoneal sclerosis (EPS) for which no specific treatment exists. Tamoxifen, a synthetic estrogen, has successfully been used to treat retroperitoneal fibrosis and EPS associated with PD. Hence, we used in vitro and animal model approaches to evaluate the efficacy of Tamoxifen to inhibit the MMT as a trigger of peritoneal fibrosis. In vitro studies were carried out using omentum-derived mesothelial cells (MCs) and effluent-derived MCs. Tamoxifen blocked the MMT induced by transforming growth factor (TGF)-β1, as it preserved the expression of E-cadherin and reduced the expression of mesenchymal-associated molecules such as snail, fibronectin, collagen-I, α-smooth muscle actin, and matrix metalloproteinse-2. Tamoxifen-treatment preserved the fibrinolytic capacity of MCs treated with TGF-β1 and decreased their migration capacity. Tamoxifen did not reverse the MMT of non-epitheliod MCs from effluents, but it reduced the expression of some mesenchymal molecules. In mice PD model, we demonstrated that MMT progressed in parallel with peritoneal membrane thickness. In addition, we observed that Tamoxifen significantly reduced peritoneal thickness, angiogenesis, invasion of the compact zone by mesenchymal MCs and improved peritoneal function. Tamoxifen also reduced the effluent levels of vascular endothelial growth factor and leptin. These results demonstrate that Tamoxifen is a therapeutic option to treat peritoneal fibrosis, and that its protective effect is mediated via modulation of the MMT process.  相似文献   
47.
The increased vascular calcification, cardiovascular morbidity, and mortality in chronic kidney disease (CKD) patients has been associated with disturbances in mineral-bone metabolism. In order to determine markers of the vascular calcification frequently observed in these patients, blood samples of elderly male and female hemodialysis CKD patients were used to measure serum levels of: osteoprotegerin (OPG), total soluble receptor activator of nuclear factor-κB ligand (sRANKL), and fetuin-A by enzyme immunoassay; tartrate-resistant acid phosphatase (TRACP-5b), and bone-specific alkaline phosphatase (BAP) by immunoenzymometric assay; osteocalcin (OC) by ELISA; iPTH by immunoradiometric assay; 25(OH)D3 and 1,25(OH)2D3, by I125 radioimmunoassay; and calcium and phosphorus by photometric assay. Serum OPG, BAP, iPTH, phosphorus, and OC levels were higher and serum 25(OH)D3, 1,25(OH)2D3, and fetuin-A levels lower in both male and female CKD patients than in their respective controls. Our results indicate that the bone formation and resorption parameters are altered in elderly male and female hemodialysis CKD patients. These changes may lead to vascular calcifications and cardiovascular complications, given that elevated OPG and OC levels and reduced fetuin-A levels are associated with cardiovascular events.  相似文献   
48.
The migratory route of neural progenitor/precursor cells (NPC) has a central role in central nervous system development. Although the role of the chemokine CXCL12 in NPC migration has been described, the intracellular signaling cascade involved remains largely unclear. Here we studied the molecular mechanisms that promote murine NPC migration in response to CXCL12, in vitro and ex vivo. Migration was highly dependent on signaling by the CXCL12 receptor, CXCR4. Although the JAK/STAT pathway was activated following CXCL12 stimulation of NPC, JAK activity was not necessary for NPC migration in vitro. Whereas CXCL12 activated the PI3K catalytic subunits p110α and p110β in NPC, only p110β participated in CXCL12-mediated NPC migration. Ex vivo experiments using organotypic slice cultures showed that p110β blockade impaired NPC exit from the medial ganglionic eminence. In vivo experiments using in utero electroporation nonetheless showed that p110β is dispensable for radial migration of pyramidal neurons. We conclude that PI3K p110β is activated in NPC in response to CXCL12, and its activity is necessary for immature interneuron migration to the cerebral cortex.  相似文献   
49.
The Iberian mountain spiny fescues are a reticulate group of five diploid grass taxa consisting of three parental species and two putative hybrids: F. × souliei (F. eskia × F. quadriflora) and F. × picoeuropeana (F. eskia × F. gautieri). Phenotypic and molecular studies were conducted with the aim of determining the taxonomic boundaries and genetic relationships of the five taxa and disentangling the origins of the two hybrids. Statistical analyses of 31 selected phenotypic traits were conducted on individuals from 159 populations and on nine type specimens. Molecular analyses of random amplified polymorphic DNA (RAPD) markers were performed on 29 populations. The phenotypic analyses detected significant differences between the five taxa and demonstrated the overall intermediacy of the F. × picoeuropeana and F. × souliei between their respective parents. The RAPD analysis corroborated the genetic differentiation of F. eskia, F. gautieri and F. quadriflora and the intermediate nature of the two hybrids; however, they also detected genetic variation within F. × picoeuropeana. These results suggest distinct origins for F. × picoeuropeana in the Cantabrian and Pyrenean mountains, with the sporadic Pyrenean populations having potentially resulted from recent hybridizations and the stabilized Cantabrian ones from older events followed by potential displacements of the parents. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 676–706.  相似文献   
50.
Phenotypic plasticity is central to the persistence of populations and a key element in the evolution of species and ecological interactions, but its mechanistic basis is poorly understood. This article examines the hypothesis that epigenetic variation caused by changes in DNA methylation are related to phenotypic plasticity in a heterophyllous tree producing two contrasting leaf types. The relationship between mammalian browsing and the production of prickly leaves was studied in a population of Ilex aquifolium (Aquifoliaceae). DNA methylation profiles of contiguous prickly and nonprickly leaves on heterophyllous branchlets were compared using a methylation‐sensitive amplified polymorphism (MSAP) method. Browsing and the production of prickly leaves were correlated across trees. Within heterophyllous branchlets, pairs of contiguous prickly and nonprickly leaves differed in genome‐wide DNA methylation. The mean per‐marker probability of methylation declined significantly from nonprickly to prickly leaves. Methylation differences between leaf types did not occur randomly across the genome, but affected predominantly certain specific markers. The results of this study, although correlative in nature, support the emerging three‐way link between herbivory, phenotypic plasticity and epigenetic changes in plants, and also contribute to the crystallization of the consensus that epigenetic variation can complement genetic variation as a source of phenotypic variation in natural plant populations. © 2012 The Linnean Society of London  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号