首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Alternanthera philoxeroides (alligator weed) is an invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation in its introduced range. The mechanisms underpinning the wide range of phenotypic variation and rapid adaptation to novel and changing environments remain uncharacterized. In this study, we examined the epigenetic variation and its correlation with phenotypic variation in plants exposed to natural and manipulated environmental variability. Genome‐wide methylation profiling using methylation‐sensitive amplified fragment length polymorphism (MSAP) revealed considerable DNA methylation polymorphisms within and between natural populations. Plants of different source populations not only underwent significant morphological changes in common garden environments, but also underwent a genome‐wide epigenetic reprogramming in response to different treatments. Methylation alterations associated with response to different water availability were detected in 78.2% (169/216) of common garden induced polymorphic sites, demonstrating the environmental sensitivity and flexibility of the epigenetic regulatory system. These data provide evidence of the correlation between epigenetic reprogramming and the reversible phenotypic response of alligator weed to particular environmental factors.  相似文献   

2.
Niche theory is one of the central organizing concepts in ecology. Generally, this theory defines a given species niche as all of the factors that effect the persistence of the species as well as the impact of the species in a given location ( Hutchinson 1957 ; Chase 2011 ). Many studies have argued that phenotypic plasticity enhances niche width because plastic responses allow organisms to express advantageous phenotypes in a broader range of environments ( Bradshaw 1965 ; Van Valen 1965 ; Sultan 2001 ). Further, species that exploit habitats with fine‐grained variation, or that form metapopulations, are expected to develop broad niche widths through phenotypic plasticity ( Sultan & Spencer 2002 ; Baythavong 2011 ). Although a long history of laboratory, greenhouse and reciprocal transplant experiments have provided insight into how plasticity contributes to niche width ( Pigliucci 2001 ), recent advances in molecular approaches allow for a mechanistic understanding of plasticity at the molecular level ( Nicotra et al. 2010 ). In particular, variation in epigenetic effects is a potential source of the within‐genotype variation that underlies the phenotypic plasticity associated with broad niche widths. Epigenetic mechanisms can alter gene expression and function without altering DNA sequence ( Richards 2006 ) and may be stably transmitted across generations ( Jablonka & Raz 2009 ; Verhoeven et al. 2010 ). Also, epigenetic mechanisms may be an important component of an individual’s response to the environment ( Verhoeven et al. 2010 ). While these ideas are intriguing, few studies have made a clear connection between genome‐wide DNA methylation patterns and phenotypic plasticity (e.g. Bossdorf et al. 2010 ). In this issue of Molecular Ecology, Herrera et al. (2012) present a study that demonstrates epigenetic changes in genome‐wide DNA methylation are causally active in a species’ ability to exploit resources from a broad range of environments and are particularly important in harsh environments.  相似文献   

3.
4.
Herrera CM  Pozo MI  Bazaga P 《Molecular ecology》2012,21(11):2602-2616
In addition to genetic differences between individuals as a result of nucleotide sequence variation, epigenetic changes that occur as a result of DNA methylation may also contribute to population niche width by enhancing phenotypic plasticity, although this intriguing possibility remains essentially untested. Using the nectar‐living yeast Metschnikowia reukaufii as study subject, we examine the hypothesis that changes in genome‐wide DNA methylation patterns underlie the ability of this fugitive species to exploit a broad resource range in its heterogeneous and patchy environment. Data on floral nectar characteristics and their use by M. reukaufii in the wild were combined with laboratory experiments and methylation‐sensitive amplified polymorphism (MSAP) analyses designed to detect epigenetic responses of single genotypes to variations in sugar environment that mimicked those occurring naturally in nectar. M. reukaufii exploited a broad range of resources, occurring in nectar of 48% of species and 52% of families surveyed, and its host plants exhibited broad intra‐ and interspecific variation in sugar‐related nectar features. Under experimental conditions, sugar composition, sugar concentration and their interaction significantly influenced the mean probability of MSAP markers experiencing a transition from unmethylated to methylated state. Alterations in methylation status were not random but predictably associated with certain markers. The methylation inhibitor 5‐azacytidine (5‐AzaC) had strong inhibitory effects on M. reukaufii proliferation in sugar‐containing media, and a direct relationship existed across sugar × concentration experimental levels linking inhibitory effect of 5‐AzaC and mean per‐marker probability of genome‐wide methylation. Environmentally induced DNA methylation polymorphisms allowed genotypes to grow successfully in extreme sugar environments, and the broad population niche width of M. reukaufii was largely made possible by epigenetic changes enabling genotype plasticity in resource use.  相似文献   

5.
DNA methylation could shape phenotypic responses to environmental cues and underlie developmental plasticity. Environmentally induced changes in DNA methylation during development can give rise to stable phenotypic traits and thus affect fitness. In the laboratory, it has been shown that the vertebrate methylome undergoes dynamic reprogramming during development, creating a critical window for environmentally induced epigenetic modifications. Studies of DNA methylation in the wild are lacking, yet are essential for understanding how genes and the environment interact to affect phenotypic development and ultimately fitness. Furthermore, our knowledge of the establishment of methylation patterns during development in birds is limited. We quantified genome‐wide DNA methylation at various stages of embryonic and postnatal development in an altricial passerine bird, the great tit Parus major. While, there was no change in global DNA methylation in embryonic tissue during the second half of embryonic development, a twofold increase in DNA methylation in blood occurred between 6 and 15 days posthatch. Though not directly comparable, DNA methylation levels were higher in the blood of nestlings compared with embryonic tissue at any stage of prenatal development. This provides the first evidence that DNA methylation undergoes global change during development in a wild bird, supporting the hypothesis that methylation mediates phenotypic development. Furthermore, the plasticity of DNA methylation demonstrated during late postnatal development, in the present study, suggests a wide window during which DNA methylation could be sensitive to environmental influences. This is particularly important for our understanding of the mechanisms by which early‐life conditions influence later‐life performance. While, we found no evidence for differences in genome‐wide methylation in relation to habitat of origin, environmental variation is likely to be an important driver of variation in methylation at specific loci.  相似文献   

6.
Environmentally induced phenotypic plasticity is thought to play an important role in the adaption of plant populations to heterogeneous habitat conditions, and yet the importance of epigenetic variation as a mechanism of adaptive plasticity in natural plant populations still merits further research. In this study, we investigated populations of Vitex negundo var. heterophylla (Chinese chastetree) from adjacent habitat types at seven sampling sites. Using several functional traits, we detected a significant differentiation between habitat types. With amplified fragment length polymorphisms (AFLP) and methylation‐sensitive AFLP (MSAP), we found relatively high levels of genetic and epigenetic diversity but very low genetic and epigenetic differences between habitats within sites. Bayesian clustering showed a remarkable habitat‐related differentiation and more genetic loci associated with the habitat type than epigenetic, suggesting that the adaptation to the habitat is genetically based. However, we did not find any significant correlation between genetic or epigenetic variation and habitat using simple and partial Mantel tests. Moreover, we found no correlation between genetic and ecologically relevant phenotypic variation and a significant correlation between epigenetic and phenotypic variation. Although we did not find any direct relationship between epigenetic variation and habitat environment, our findings suggest that epigenetic variation may complement genetic variation as a source of functional phenotypic diversity associated with adaptation to the heterogeneous habitat in natural plant populations.  相似文献   

7.
Loss or gain of DNA methylation can affect gene expression and is sometimes transmitted across generations. Such epigenetic alterations are thus a possible source of heritable phenotypic variation in the absence of DNA sequence change. However, attempts to assess the prevalence of stable epigenetic variation in natural and experimental populations and to quantify its impact on complex traits have been hampered by the confounding effects of DNA sequence polymorphisms. To overcome this problem as much as possible, two parents with little DNA sequence differences, but contrasting DNA methylation profiles, were used to derive a panel of epigenetic Recombinant Inbred Lines (epiRILs) in the reference plant Arabidopsis thaliana. The epiRILs showed variation and high heritability for flowering time and plant height (~30%), as well as stable inheritance of multiple parental DNA methylation variants (epialleles) over at least eight generations. These findings provide a first rationale to identify epiallelic variants that contribute to heritable variation in complex traits using linkage or association studies. More generally, the demonstration that numerous epialleles across the genome can be stable over many generations in the absence of selection or extensive DNA sequence variation highlights the need to integrate epigenetic information into population genetics studies.  相似文献   

8.
Inferences about the role of epigenetics in plant ecology and evolution are mostly based on studies of cultivated or model plants conducted in artificial environments. Insights from natural populations, however, are essential to evaluate the possible consequences of epigenetic processes in biologically realistic scenarios with genetically and phenotypically heterogeneous populations. Here, we explore associations across individuals between DNA methylation transmissibility (proportion of methylation‐sensitive loci whose methylation status persists unchanged after male gametogenesis), genetic characteristics (assessed with AFLP markers), seed size variability (within‐plant seed mass variance), and realized maternal fecundity (number of recently recruited seedlings), in three populations of the perennial herb Helleborus foetidus along a natural ecological gradient in southeastern Spain. Plants (sporophytes) differed in the fidelity with which DNA methylation was transmitted to descendant pollen (gametophytes). This variation in methylation transmissibility was associated with genetic differences. Four AFLP loci were significantly associated with transmissibility and accounted collectively for ~40% of its sample‐wide variance. Within‐plant variance in seed mass was inversely related to individual transmissibility. The number of seedlings recruited by individual plants was significantly associated with transmissibility. The sign of the relationship varied between populations, which points to environment‐specific, divergent phenotypic selection on epigenetic transmissibility. Results support the view that epigenetic transmissibility is itself a phenotypic trait whose evolution may be driven by natural selection, and suggest that in natural populations epigenetic and genetic variation are two intertwined, rather than independent, evolutionary factors.  相似文献   

9.
DNA methylation can be environmentally modulated and plays a role in phenotypic plasticity. To understand the role of environmentally induced epigenetic variation and its dynamics in natural populations and ecosystems, it is relevant to place studies in a real-world context. Our experimental model is the wild potato Solanum kurtzianum, a close relative of the cultivated potato S. tuberosum. It was evaluated in its natural habitat, an arid Andean region in Argentina characterised by spatial and temporal environmental fluctuations. The dynamics of phenotypic and epigenetic variability (with Methyl Sensitive Amplified Polymorphism markers, MSAP) were assayed in three genotypes across three growing seasons. These genotypes were cultivated permanently and also reciprocally transplanted between experimental gardens (EG) differing in ca. 1000 m of altitude. In two seasons, the genotypes presented differential methylation patterns associated to the EG. In the reciprocal transplants, a rapid epigenomic remodelling occurred according to the growing season. Phenotypic plasticity, both spatial (between EGs within season) and temporal (between seasons), was detected. The epigenetic and phenotypic variability was positively correlated. The lack of an evident mitotic epigenetic memory would be a common response to short-term environmental fluctuations. Thus, the environmentally induced phenotypic and epigenetic variation could contribute to populations persistence through time. These results have implications for understanding the great ecological diversity of wild potatoes.  相似文献   

10.
Epigenetic modifications, such as DNA methylation variation, can generate heritable phenotypic variation independent of the underlying genetic code. However, epigenetic variation in natural plant populations is poorly documented and little understood. Here, we test whether northward range expansion of obligate apomicts of the common dandelion (Taraxacum officinale) is associated with DNA methylation variation. We characterized and compared patterns of genetic and DNA methylation variation in greenhouse‐reared offspring of T. officinale that were collected along a latitudinal transect of northward range expansion in Europe. Genetic AFLP and epigenetic MS‐AFLP markers revealed high levels of local diversity and modest but significant heritable differentiation between sampling locations and between the southern, central and northern regions of the transect. Patterns of genetic and epigenetic variation were significantly correlated, reflecting the genetic control over epigenetic variation and/or the accumulation of lineage‐specific spontaneous epimutations, which may be selectively neutral. In addition, we identified a small component of DNA methylation differentiation along the transect that is independent of genetic variation. This epigenetic differentiation might reflect environment‐specific induction or, in case the DNA methylation variation affects relevant traits and fitness, selection of heritable DNA methylation variants. Such generated epigenetic variants might contribute to the adaptive capacity of individual asexual lineages under changing environments. Our results highlight the potential of heritable DNA methylation variation to contribute to population differentiation along ecological gradients. Further studies are needed using higher resolution methods to understand the functional significance of such natural occurring epigenetic differentiation.  相似文献   

11.
Phenotypic plasticity is an important mechanism for populations to buffer themselves from environmental change. While it has long been appreciated that natural populations possess genetic variation in the extent of plasticity, a surge of recent evidence suggests that epigenetic variation could also play an important role in shaping phenotypic responses. Compared with genetic variation, epigenetic variation is more likely to have higher spontaneous rates of mutation and a more sensitive reaction to environmental inputs. In our review, we first provide an overview of recent studies on epigenetically encoded thermal plasticity in animals to illustrate environmentally‐mediated epigenetic effects within and across generations. Second, we discuss the role of epigenetic effects during adaptation by exploring population epigenetics in natural animal populations. Finally, we evaluate the evolutionary potential of epigenetic variation depending on its autonomy from genetic variation and its transgenerational stability. Although many of the causal links between epigenetic variation and phenotypic plasticity remain elusive, new data has explored the role of epigenetic variation in facilitating evolution in natural populations. This recent progress in ecological epigenetics will be helpful for generating predictive models of the capacity of organisms to adapt to changing climates.  相似文献   

12.
Phenotypic plasticity is often postulated as a principal characteristic of tuber-bearing wild Solanum species. The hypotheses to explore this observation have been developed based on the presence of genetic variation. In this context, evolutionary changes and adaptation are impossible without genetic variation. However, epigenetic effects, which include DNA methylation and microRNAs expression control, could be another source of phenotypic variation in ecologically relevant traits. To achieve a detailed mechanistic understanding of these processes, it is necessary to separate epigenetic from DNA sequence-based effects and to evaluate their relative importance on phenotypic variability. We explored the potential relevance of epigenetic effects in individuals with the same genotype. For this purpose, a clone of the wild potato Solanum ruiz-lealii, a non-model species in which natural methylation variability has been demonstrated, was selected and its DNA methylation was manipulated applying 5-Azacytidine (AzaC), a demethylating agent. The AzaC treatment induced early flowering and changes in leaf morphology. Using quantitative real-time PCR, we identified four miRNAs up-regulated in the AzaC-treated plants. One of them, miRNA172, could play a role on the early flowering phenotype. In this work, we showed that the treatment with AzaC could provide meaningful results allowing to study both the phenotypic plasticity in tuber-bearing Solanum species and the inter-relation between DNA methylation and miRNA accumulations in a wide range of species.  相似文献   

13.
Epigenetic modification of cytosine methylation states can be elicited by environmental stresses and may be a key process affecting phenotypic plasticity and adaptation. Parasites are potent stressors with profound physiological and ecological effects on their host, but there is little understanding in how parasites may influence host methylation states. Here, we estimate epigenetic diversity and differentiation among 21 populations of red grouse (Lagopus lagopus scotica) in north‐east Scotland and test for association of gastrointestinal parasite load (caecal nematode Trichostrongylus tenuis) with hepatic genome‐wide and locus‐specific methylation states. Following methylation‐sensitive AFLP (MSAP), 129 bands, representing 73 methylation‐susceptible and 56 nonmethylated epiloci, were scored across 234 individuals. The populations differed significantly in genome‐wide methylation levels and were also significantly epigenetically (FSC = 0.0227; P < 0.001) and genetically (FSC = 0.0058; P < 0.001) differentiated. Parasite load was not associated with either genome‐wide methylation levels or epigenetic differentiation. Instead, we found eight disproportionately differentiated epilocus‐specific methylation states (FST outliers) using bayescan software and significant positive and negative association of 35 methylation states with parasite load from bespoke generalized estimating equations (GEE), simple logistic regression (sam ) and Bayesian environmental analysis (bayenv 2). Following Sanger sequencing, genome mapping and geneontology (go ) annotation, some of these epiloci were linked to genes involved in regulation of cell cycle, signalling, metabolism, immune system and notably rRNA methylation, histone acetylation and small RNAs. These findings demonstrate an epigenetic signature of parasite load in populations of a wild bird and suggest intriguing physiological effects of parasite‐associated cytosine methylation.  相似文献   

14.
Heritable phenotypic variation in plants can be caused not only by underlying genetic differences, but also by variation in epigenetic modifications such as DNA methylation. However, we still know very little about how relevant such epigenetic variation is to the ecology and evolution of natural populations. We conducted a greenhouse experiment in which we treated a set of natural genotypes of Arabidopsis thaliana with the demethylating agent 5-azacytidine and examined the consequences of this treatment for plant traits and their phenotypic plasticity. Experimental demethylation strongly reduced the growth and fitness of plants and delayed their flowering, but the degree of this response varied significantly among genotypes. Differences in genotypes’ responses to demethylation were only weakly related to their genetic relatedness, which is consistent with the idea that natural epigenetic variation is independent of genetic variation. Demethylation also altered patterns of phenotypic plasticity, as well as the amount of phenotypic variation observed among plant individuals and genotype means. We have demonstrated that epigenetic variation can have a dramatic impact on ecologically important plant traits and their variability, as well as on the fitness of plants and their ecological interactions. Epigenetic variation may thus be an overlooked factor in the evolutionary ecology of plant populations.  相似文献   

15.
Evolutionary theory posits that adaptation can result when populations harbour heritable phenotypic variation for traits that increase tolerance to local conditions. However, the actual mechanisms that underlie heritable phenotypic variation are not completely understood (Keller 2014 ). Recently, the potential role of epigenetic mechanisms in the process of adaptive evolution has been the subject of much debate (Pigliucci & Finkelman 2014 ). Studies of variation in DNA methylation in particular have shown that natural populations harbour high amounts of epigenetic variation, which can be inherited across generations and can cause heritable trait variation independently of genetic variation (Kilvitis et al. 2014 ). While we have made some progress addressing the importance of epigenetics in ecology and evolution using methylation‐sensitive AFLP (MS‐AFLP), this approach provides relatively few anonymous and dominant markers per individual. MS‐AFLP are difficult to link to functional genomic elements or phenotype and are difficult to compare directly to genetic variation, which has limited the insights drawn from studies of epigenetic variation in natural nonmodel populations (Schrey et al. 2013 ). In this issue, Platt et al. provide an example of a promising approach to address this problem by applying a reduced representation bisulphite sequencing (RRBS) approach based on next‐generation sequencing methods in an ecological context.  相似文献   

16.
17.
Although phenotypic plasticity of morphological and physiological traits in response to drought could be adaptive, there have been relatively few tests of plasticity variation or of adaptive plasticity in drought-coping traits across populations with different moisture availabilities. We measured floral size, vegetative size, and physiological traits in four field populations of Leptosiphon androsaceus (Polemoniaceae) that were distributed across a rainfall gradient in California, USA. Measurements were made over 5 years that varied in precipitation. We also conducted a growth chamber experiment in which half-sibs from three populations were divided equally among a well-watered and a drought treatment. We tested for selection on traits in each of the watering treatments, and evaluated whether traits exhibited plasticity. In the field, plant traits exhibited substantial variation across populations and years. Flower size, leaf size, and water-use efficiency (WUE) were generally higher for populations that received greater average rainfall. However, in dry years, we observed a decrease in flower and leaf size, but an increase in WUE across the populations. In the growth chamber experiment, leaf and physiological traits exhibited plasticity, with smaller leaves and higher WUE found in the drought, as compared to the well-watered treatment. Only specific leaf area exhibited differentiation in plasticity among populations. Although there was no observed plasticity in floral size, selection favored smaller flowers in the drought treatment and larger flowers in the well-watered treatment. Our results suggest that moisture availability has led to trait variation in L. androsaceus via a combination of selection and phenotypic plasticity.  相似文献   

18.
Populations often differ in phenotype and these differences can be caused by adaptation by natural selection, random neutral processes, and environmental responses. The most straightforward way to divide mechanisms that influence phenotypic variation is heritable variation and environmental‐induced variation (e.g., plasticity). While genetic variation is responsible for most heritable phenotypic variation, part of this is also caused by nongenetic inheritance. Epigenetic processes may be one of the underlying mechanisms of plasticity and nongenetic inheritance and can therefore possibly contribute to heritable differences through drift and selection. Epigenetic variation may be influenced directly by the environment, and part of this variation can be transmitted to next generations. Field screenings combined with common garden experiments will add valuable insights into epigenetic differentiation, epigenetic memory and can help to reveal part of the relative importance of epigenetics in explaining trait variation. We explored both genetic and epigenetic diversity, structure and differentiation in the field and a common garden for five British and five French Scabiosa columbaria populations. Genetic and epigenetic variation was subsequently correlated with trait variation. Populations showed significant epigenetic differentiation between populations and countries in the field, but also when grown in a common garden. By comparing the epigenetic variation between field and common garden‐grown plants, we showed that a considerable part of the epigenetic memory differed from the field‐grown plants and was presumably environmentally induced. The memory component can consist of heritable variation in methylation that is not sensitive to environments and possibly genetically based, or environmentally induced variation that is heritable, or a combination of both. Additionally, random epimutations might be responsible for some differences as well. By comparing epigenetic variation in both the field and common environment, our study provides useful insight into the environmental and genetic components of epigenetic variation.  相似文献   

19.
Being sessile organisms, plants show a high degree of developmental plasticity to cope with a constantly changing environment. While plasticity in plants is largely controlled genetically, recent studies have demonstrated the importance of epigenetic mechanisms, especially DNA methylation, for gene regulation and phenotypic plasticity in response to internal and external stimuli. Induced epigenetic changes can be a source of phenotypic variations in natural plant populations that can be inherited by progeny for multiple generations. Whether epigenetic phenotypic changes are advantageous in a given environment, and whether they are subject to natural selection is of great interest, and their roles in adaptation and evolution are an area of active research in plant ecology. This review is focused on the role of heritable epigenetic variation induced by environmental changes, and its potential influence on adaptation and evolution in plants.  相似文献   

20.
Incongruence between conventional and molecular systematics has left the delineation of many species unresolved. Reef‐building corals are no exception, with phenotypic plasticity among the most plausible explanations for alternative morphospecies. As potential molecular signatures of phenotypic plasticity, epigenetic processes may contribute to our understanding of morphospecies. We compared genetic and epigenetic variation in Caribbean branching Porites spp., testing the hypothesis that epigenetics—specifically, differential patterns of DNA methylation—play a role in alternative morphotypes of a group whose taxonomic status has been questioned. We used reduced representation genome sequencing to analyse over 1,000 single nucleotide polymorphisms and CpG sites in 27 samples of Porites spp. exhibiting a range of morphotypes from a variety of habitats in Belize. We found stronger evidence for genetic rather than epigenetic structuring, identifying three well‐defined genetic groups. One of these groups exhibited significantly thicker branches, and branch thickness was a better predictor of genetic groups than depth, habitat or symbiont type. In contrast, no clear epigenetic patterns emerged with respect to phenotypic or habitat variables. While there was a weak positive correlation between pairwise genetic and epigenetic distance, two pairs of putative clones exhibited substantial epigenetic differences, suggesting a strong environmental effect. We speculate that epigenetic patterns are a complex mosaic reflecting diverse environmental histories superimposed over a relatively small heritable component. Given the role of genetics in branching Porites spp. morphospecies we were able to detect with genomewide sequencing, use of such techniques throughout the geographic range of these corals may help settle their phylogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号