首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   33篇
  2023年   8篇
  2022年   1篇
  2021年   3篇
  2020年   14篇
  2019年   9篇
  2018年   11篇
  2017年   8篇
  2016年   5篇
  2015年   13篇
  2014年   9篇
  2013年   8篇
  2012年   12篇
  2011年   9篇
  2010年   5篇
  2009年   3篇
  2008年   7篇
  2007年   5篇
  2006年   5篇
  2005年   9篇
  2004年   4篇
  2003年   5篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1993年   1篇
  1975年   2篇
排序方式: 共有170条查询结果,搜索用时 359 毫秒
61.
Grassland ecosystems act as a crucial role in the global carbon cycle and provide vital ecosystem services for many species. However, these low‐productivity and water‐limited ecosystems are sensitive and vulnerable to climate perturbations and human intervention, the latter of which is often not considered due to lack of spatial information regarding the grassland management. Here by the application of a model tree ensemble (MTE‐GRASS) trained on local eddy covariance data and using as predictors gridded climate and management intensity field (grazing and cutting), we first provide an estimate of global grassland gross primary production (GPP). GPP from our study compares well (modeling efficiency NSE = 0.85 spatial; NSE between 0.69 and 0.94 interannual) with that from flux measurement. Global grassland GPP was on average 11 ± 0.31 Pg C yr?1 and exhibited significantly increasing trend at both annual and seasonal scales, with an annual increase of 0.023 Pg C (0.2%) from 1982 to 2011. Meanwhile, we found that at both annual and seasonal scale, the trend (except for northern summer) and interannual variability of the GPP are primarily driven by arid/semiarid ecosystems, the latter of which is due to the larger variation in precipitation. Grasslands in arid/semiarid regions have a stronger (33 g C m?2 yr?1/100 mm) and faster (0‐ to 1‐month time lag) response to precipitation than those in other regions. Although globally spatial gradients (71%) and interannual changes (51%) in GPP were mainly driven by precipitation, where most regions with arid/semiarid climate zone, temperature and radiation together shared half of GPP variability, which is mainly distributed in the high‐latitude or cold regions. Our findings and the results of other studies suggest the overwhelming importance of arid/semiarid regions as a control on grassland ecosystems carbon cycle. Similarly, under the projected future climate change, grassland ecosystems in these regions will be potentially greatly influenced.  相似文献   
62.
Vegetation response to soil and atmospheric drought has raised extensively controversy, however, the relative contributions of soil drought, atmospheric drought, and their compound droughts on global vegetation growth remain unclear. Combining the changes in soil moisture (SM), vapor pressure deficit (VPD), and vegetation growth (normalized difference vegetation index [NDVI]) during 1982–2015, here we evaluated the trends of these three drought types and quantified their impacts on global NDVI. We found that global VPD has increased 0.22 ± 0.05 kPa·decade−1 during 1982–2015, and this trend was doubled after 1996 (0.32 ± 0.16 kPa·decade−1) than before 1996 (0.16 ± 0.15 kPa·decade−1). Regions with large increase in VPD trend generally accompanied with decreasing trend in SM, leading to a widespread increasing trend in compound droughts across 37.62% land areas. We further found compound droughts dominated the vegetation browning since late 1990s, contributing to a declined NDVI of 64.56%. Earth system models agree with the dominant role of compound droughts on vegetation growth, but their negative magnitudes are considerably underestimated, with half of the observed results (34.48%). Our results provided the evidence of compound droughts-induced global vegetation browning, highlighting the importance of correctly simulating the ecosystem-scale response to the under-appreciated exposure to compound droughts as it will increase with climate change.  相似文献   
63.
To study the antigenic conservation of epitopes of human immunodeficiency virus type 1 (HIV-1) isolates of different clades, the abilities of human anti-HIV-1 gp120 and gp41 monoclonal antibodies (MAbs) to bind to intact HIV-1 virions were determined by a newly developed virus-binding assay. Eighteen human anti-HIV MAbs, which were directed at the V2, V3 loop, CD4-binding domain (CD4bd), C5, or gp41 regions, were used. Nine HIV-1 isolates from clades A, B, D, F, G, and H were used. Microtiter wells were coated with the MAbs, after which virus was added. Bound virus was detected after lysis by testing for p24 antigen with a noncommercial p24 enzyme-linked immunosorbent assay. The anti-V3 MAbs strongly bound the four clade B viruses and viruses from the non-B clades, although binding was weaker and more sporadic with the latter. The degrees of binding by the anti-V3 MAbs to CXCR4- and CCR5-tropic viruses were similar, suggesting that the V3 loops of these two categories of viruses are similarly exposed. The anti-C5 MAbs bound isolates of clades A, B, and D. Only weak and sporadic binding of all the viruses tested with anti-CD4bd, anti-V2, and anti-gp41 MAbs was detected. These results suggest that V3 and C5 structures are shared and well exposed on intact virions of different clades compared to the CD4bd, V2, and gp41 regions.  相似文献   
64.
Tree-ring records can provide valuable information to advance our understanding of contemporary terrestrial carbon cycling and to reconstruct key metrics in the decades preceding monitoring data. The growing use of tree rings in carbon-cycle research is being facilitated by increasing recognition of reciprocal benefits among research communities. Yet, basic questions persist regarding what tree rings represent at the ecosystem level, how to optimally integrate them with other data streams, and what related challenges need to be overcome. It is also apparent that considerable unexplored potential exists for tree rings to refine assessments of terrestrial carbon cycling across a range of temporal and spatial domains. Here, we summarize recent advances and highlight promising paths of investigation with respect to (1) growth phenology, (2) forest productivity trends and variability, (3) CO2 fertilization and water-use efficiency, (4) forest disturbances, and (5) comparisons between observational and computational forest productivity estimates. We encourage the integration of tree-ring data: with eddy-covariance measurements to investigate carbon allocation patterns and water-use efficiency; with remotely sensed observations to distinguish the timing of cambial growth and leaf phenology; and with forest inventories to develop continuous, annually-resolved and long-term carbon budgets. In addition, we note the potential of tree-ring records and derivatives thereof to help evaluate the performance of earth system models regarding the simulated magnitude and dynamics of forest carbon uptake, and inform these models about growth responses to (non-)climatic drivers. Such efforts are expected to improve our understanding of forest carbon cycling and place current developments into a long-term perspective.  相似文献   
65.
Heat requirement, expressed in growing degree days (GDD), is a widely used method to assess and predict the effect of temperature on plant development. Until recently, the analysis of spatial patterns of GDD requirement for spring vegetation green‐up onset was limited to local and regional scales, mainly because of the sparse and aggregated spatial availability of ground phenology data. Taking advantage of the large temporal and spatial scales of remote sensing‐based green‐up onset data, we studied the spatial patterns of GDD requirement for vegetation green‐up at northern middle and high latitudes. We further explored the correlations between GDD requirement for vegetation green‐up and previous winter season chilling temperatures and precipitation, using spatial partial correlations. We showed that GDD requirement for vegetation green‐up onset declines towards the north at a mean rate of 18.8 °C‐days per degree latitude between 35°N and 70°N, and vary significantly among different vegetation types. Our results confirmed that the GDD requirement for vegetation green‐up is negatively correlated with previous winter chilling, which was defined as the number of chilling days from the day when the land surface froze in the previous autumn to the day of green‐up onset. This negative correlation is a well‐known phenomenon from local studies. Interestingly, irrespective of the vegetation type, we also found a positive correlation between the GDD requirement and previous winter season precipitation, which was defined as the sum of the precipitation of the month when green‐up onset occur and the precipitation that occurred during the previous 2 months. Our study suggests that GDD requirement, chilling and precipitation may have complex interactions in their effects on spring vegetation green‐up phenology. These findings have important implications for improving phenology models and could therefore advance our understanding of the interplay between spring phenology and carbon fluxes.  相似文献   
66.
The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N : P applications under low, medium, and high input scenarios, for past (1975), current, and future N : P mass ratios of respectively, 1 : 0.29, 1 : 0.15, and 1 : 0.05. At low N inputs (10 kg ha?1), current yield deficits amount to 10% but will increase up to 27% under the assumed future N : P ratio, while at medium N inputs (50 kg N ha?1), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low‐quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N : P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1 : 0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3‐fold to be optimal, and to increase 11.7‐fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.  相似文献   
67.
The impact of climate warming on the advancement of plant spring phenology has been heavily investigated over the last decade and there exists great variability among plants in their phenological sensitivity to temperature. However, few studies have explicitly linked phenological sensitivity to local climate variance. Here, we set out to test the hypothesis that the strength of phenological sensitivity declines with increased local spring temperature variance, by synthesizing results across ground observations. We assemble ground‐based long‐term (20–50 years) spring phenology database (PEP725 database) and the corresponding climate dataset. We find a prevalent decline in the strength of phenological sensitivity with increasing local spring temperature variance at the species level from ground observations. It suggests that plants might be less likely to track climatic warming at locations with larger local spring temperature variance. This might be related to the possibility that the frost risk could be higher in a larger local spring temperature variance and plants adapt to avoid this risk by relying more on other cues (e.g., high chill requirements, photoperiod) for spring phenology, thus suppressing phenological responses to spring warming. This study illuminates that local spring temperature variance is an understudied source in the study of phenological sensitivity and highlight the necessity of incorporating this factor to improve the predictability of plant responses to anthropogenic climate change in future studies.  相似文献   
68.
A recently developed model for enterocolitis in mice involves pre-treatment with the antibiotic streptomycin prior to infection with Salmonella enterica serovar Typhimurium ( S.  Typhimurium). The contribution of Nramp1/Slc11a1 protein, a critical host defence mechanism against S.  Typhimurium, to the development of inflammation in this model has not been studied. Here, we analysed the impact of Nramp1 expression on the early development of colitis using isogenic Nramp1+/+ and Nramp1−/− mice. We hypothesized that Nramp1 acts by rapidly inducing an inflammatory response in the gut mucosa creating an antibacterial environment and limiting spread of S.  Typhimurium to systemic sites. We observed that Nramp1+/+ mice showed lower numbers of S.  Typhimurium in the caecum compared with Nramp1−/− mice at all times analysed. Acute inflammation was much more pronounced in Nramp1+/+ mice 1 day after infection. The effect of Nramp1 on development of colitis was characterized by higher secretion of the pro-inflammatory cytokines IFN-γ, TNF-α and MIP-1α and a massive infiltration of neutrophils and macrophages, compared with Nramp1−/− animals. These data show that an early and rapid inflammatory response results in protection against pathological effects of S.  Typhimurium infection in Nramp1+/+ mice.  相似文献   
69.
The growth of the global terrestrial sink of carbon dioxide has puzzled scientists for decades. We propose that the role of land management practices—from intensive forestry to allowing passive afforestation of abandoned lands—have played a major role in the growth of the terrestrial carbon sink in the decades since the mid twentieth century. The Forest Transition, a historic transition from shrinking to expanding forests, and from sparser to denser forests, has seen an increase of biomass and carbon across large regions of the globe. We propose that the contribution of Forest Transitions to the terrestrial carbon sink has been underestimated. Because forest growth is slow and incremental, changes in the carbon density in forest biomass and soils often elude detection. Measurement technologies that rely on changes in two‐dimensional ground cover can miss changes in forest density. In contrast, changes from abrupt and total losses of biomass in land clearing, forest fires and clear cuts are easy to measure. Land management improves over time providing important present contributions and future potential to climate change mitigation. Appreciating the contributions of Forest Transitions to the sequestering of atmospheric carbon will enable its potential to aid in climate change mitigation.  相似文献   
70.
Accelerated terrestrial ecosystem carbon turnover and its drivers   总被引:1,自引:0,他引:1  
The terrestrial carbon cycle has been strongly influenced by human‐induced CO2 increase, climate change, and land use change since the industrial revolution. These changes alter the carbon balance of ecosystems through changes in vegetation productivity and ecosystem carbon turnover time (τeco). Even though numerous studies have drawn an increasingly clear picture of global vegetation productivity changes, global changes in τeco are still unknown. In this study, we analyzed the changes of τeco between the 1860s and the 2000s and their drivers, based on theory of dynamic carbon cycle in non‐steady state and process‐based ecosystem model. Results indicate that τeco has been reduced (i.e., carbon turnover has accelerated) by 13.5% from the 1860s (74 years) to the 2000s (64 years), with reductions of 1 year of carbon residence times in vegetation (rveg) and of 9 years in soil (rsoil). Additionally, the acceleration of τeco was examined at biome scale and grid scale. Among different driving processes, land use change and climate change were found to be the major drivers of turnover acceleration. These findings imply that carbon fixed by plant photosynthesis is being lost from ecosystems to the atmosphere more quickly over time, with important implications for the climate‐carbon cycle feedbacks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号