首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3931篇
  免费   286篇
  国内免费   1篇
  2023年   7篇
  2022年   20篇
  2021年   65篇
  2020年   38篇
  2019年   50篇
  2018年   82篇
  2017年   59篇
  2016年   120篇
  2015年   209篇
  2014年   217篇
  2013年   283篇
  2012年   375篇
  2011年   367篇
  2010年   188篇
  2009年   165篇
  2008年   263篇
  2007年   266篇
  2006年   225篇
  2005年   235篇
  2004年   200篇
  2003年   181篇
  2002年   180篇
  2001年   31篇
  2000年   23篇
  1999年   39篇
  1998年   39篇
  1997年   45篇
  1996年   37篇
  1995年   24篇
  1994年   25篇
  1993年   17篇
  1992年   19篇
  1991年   16篇
  1990年   14篇
  1989年   11篇
  1988年   12篇
  1987年   10篇
  1986年   17篇
  1985年   7篇
  1984年   9篇
  1983年   7篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1978年   4篇
  1977年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有4218条查询结果,搜索用时 31 毫秒
121.
122.

Background

Methanogenesis can indicate the fermentation activity of the gastrointestinal anaerobic flora. Methane also has a demonstrated anti-inflammatory potential. We hypothesized that enriched methane inhalation can influence the respiratory activity of the liver mitochondria after an ischemia-reperfusion (IR) challenge.

Methods

The activity of oxidative phosphorylation system complexes was determined after in vitro methane treatment of intact liver mitochondria. Anesthetized Sprague-Dawley rats subjected to standardized 60-min warm hepatic ischemia inhaled normoxic air (n = 6) or normoxic air containing 2.2% methane, from 50 min of ischemia and throughout the 60-min reperfusion period (n = 6). Measurement data were compared with those on sham-operated animals (n = 6 each). Liver biopsy samples were subjected to high-resolution respirometry; whole-blood superoxide and hydrogen peroxide production was measured; hepatocyte apoptosis was detected with TUNEL staining and in vivo fluorescence laser scanning microscopy.

Results

Significantly decreased complex II-linked basal respiration was found in the normoxic IR group at 55 min of ischemia and a lower respiratory capacity (~60%) and after 5 min of reperfusion. Methane inhalation preserved the maximal respiratory capacity at 55 min of ischemia and significantly improved the basal respiration during the first 30 min of reperfusion. The IR-induced cytochrome c activity, reactive oxygen species (ROS) production and hepatocyte apoptosis were also significantly reduced.

Conclusions

The normoxic IR injury was accompanied by significant functional damage of the inner mitochondrial membrane, increased cytochrome c activity, enhanced ROS production and apoptosis. An elevated methane intake confers significant protection against mitochondrial dysfunction and reduces the oxidative damage of the hepatocytes.  相似文献   
123.
Yellow-related proteins (YRPs) present in sand fly saliva act as affinity binders of bioamines, and help the fly to complete a bloodmeal by scavenging the physiological signals of damaged cells. They are also the main antigens in sand fly saliva and their recombinant form is used as a marker of host exposure to sand flies. Moreover, several salivary proteins and plasmids coding these proteins induce strong immune response in hosts bitten by sand flies and are being used to design protecting vaccines against Leishmania parasites. In this study, thirty two 3D models of different yellow-related proteins from thirteen sand fly species of two genera were constructed based on the known protein structure from Lutzomyia longipalpis. We also studied evolutionary relationships among species based on protein sequences as well as sequence and structural variability of their ligand-binding site. All of these 33 sand fly YRPs shared a similar structure, including a unique tunnel that connects the ligand-binding site with the solvent by two independent paths. However, intraspecific modifications found among these proteins affects the charges of the entrances to the tunnel, the length of the tunnel and its hydrophobicity. We suggest that these structural and sequential differences influence the ligand-binding abilities of these proteins and provide sand flies with a greater number of YRP paralogs with more nuanced answers to bioamines. All these characteristics allow us to better evaluate these proteins with respect to their potential use as part of anti-Leishmania vaccines or as an antigen to measure host exposure to sand flies.  相似文献   
124.
Propensity scoring (PS) is an established tool to account for measured confounding in non-randomized studies. These methods are sensitive to missing values, which are a common problem in observational data. The combination of multiple imputation of missing values and different propensity scoring techniques is addressed in this work. For a sample of lymph node-positive vulvar cancer patients, we re-analyze associations between the application of radiotherapy and disease-related and non-related survival. Inverse-probability-of-treatment-weighting (IPTW) and PS stratification are applied after multiple imputation by chained equation (MICE). Methodological issues are described in detail. Interpretation of the results and methodological limitations are discussed.  相似文献   
125.
Capsule: Urban Black Sparrowhawk males hunt mostly within 2.27?km of their nest during the breeding season (‘home range’ of 16.15?km2) and increased the distance slightly to 2.43?km outside of the breeding season (18.56?km2). We found high individual variation within and between six global positioning systems tagged breeding males, but no significant seasonal differences in the urban environment of Cape Town, South Africa.  相似文献   
126.
Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an important, undefined physiological role for these compounds. Here, we demonstrate that hydrocarbon-deficient mutants of Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced growth, and increased division defects. Photosynthetic rates were similar between strains, although a minor reduction in energy transfer between the soluble light harvesting phycobilisome complex and membrane-bound photosystems was observed. Hydrocarbons were shown to accumulate in thylakoid and cytoplasmic membranes. Modeling of membranes suggests these compounds aggregate in the center of the lipid bilayer, potentially promoting membrane flexibility and facilitating curvature. In vivo measurements confirmed that Synechococcus sp. PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature compared to wild type. We propose that hydrocarbons may have a role in inducing the flexibility in membranes required for optimal cell division, size, and growth, and efficient association of soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes in microalgal species suggests hydrocarbons may serve a similar function in a broad range of photosynthetic organisms.Cyanobacteria (oxygenic photosynthetic bacteria) are found in nearly every environment on Earth and are major contributors to global carbon and nitrogen fixation (Galloway et al., 2004; Zwirglmaier et al., 2008). They are distinguished among prokaryotes in containing multiple internal thylakoid membranes, the site of photosynthesis, and a large protein compartment, the carboxysome, involved in carbon fixation. Despite these extra features, cyanobacteria can be as small as 0.6 µm in diameter (Raven, 1998).All cyanobacteria with sequenced genomes encode the pathway for the biosynthesis of hydrocarbons, implying an important, although as-yet-undefined, role for these compounds (Lea-Smith et al., 2015). The major forms are C15-C19 alkanes and alkenes, which can be synthesized from fatty acyl-acyl-carrier proteins (ACPs) by one or other of two separate pathways (Fig. 1; Schirmer et al., 2010; Mendez-Perez et al., 2011). The majority of species produce alkanes and alkenes via acyl-ACP reductase (FAR) and aldehyde deformylating oxygenase (FAD; Schirmer et al., 2010; Li et al., 2012; Coates et al., 2014; Lea-Smith et al., 2015). Cyanobacterial species lacking the FAR/FAD pathway synthesize alkenes via olefin synthase (Ols; Mendez-Perez et al., 2011; Coates et al., 2014; Lea-Smith et al., 2015). This suggests that hydrocarbons produced by either pathway serve a similar role in the cell. Homologs of FAR/FAD or Ols are not present in other bacteria or plant and algal species. However, C15-C17 alkanes and alkenes, synthesized by an alternate, uncharacterized pathway, were recently detected in a range of green microalgae, including Chlamydomonas reinhardtii, Chlorella variabilis NC64A, and several Nannochloropsis species (Sorigué et al., 2016). In C. reinhardtii, hydrocarbons were primarily localized to the chloroplast, which originated in evolution from a cyanobacterium that was engulfed by a host organism (Howe et al., 2008). Hydrocarbons may therefore have a similar role in cyanobacteria, some green microalgae species, and possibly a broader range of photosynthetic organisms.Open in a separate windowFigure 1.Hydrocarbon biosynthesis is encoded in all sequenced cyanobacteria. Detailed are the two hydrocarbon biosynthetic pathways, indicated in blue and red, respectively, in cyanobacteria. The number of species encoding the enzymes in each pathway is indicated.Hydrocarbons act as antidesiccants, waterproofing agents, and signaling molecules in insects (Howard and Blomquist, 2005) and prevent water loss, ensure pollen viability, and influence pathogen interactions in plants (Kosma et al., 2009; Bourdenx et al., 2011). However, the function of hydrocarbons in cyanobacteria has not been determined. Characterization of cyanobacterial hydrocarbon biosynthesis pathways has provided the basis for investigating synthetic microbial biofuel systems, which may be a renewable substitute for fossil fuels (Schirmer et al., 2010; Choi and Lee, 2013; Howard et al., 2013). However, secretion of long-chain hydrocarbons from the cell into the medium, which is likely essential for commercially viable production, has not been observed in the absence of a membrane solubilization agent (Schirmer et al., 2010; Tan et al., 2011). Cyanobacterial hydrocarbons also have a significant environmental role. Due to the abundance of cyanobacteria in the environment, hydrocarbon production is considerable, with hundreds of millions of tons released into the ocean per annum following cell death (Lea-Smith et al., 2015). This production may be sufficient to sustain populations of hydrocarbon-degrading bacteria, which can then play an important role in consuming anthropogenic oil spills (Lea-Smith et al., 2015).Here, we investigated the cellular location and role of hydrocarbons in both spherical Synechocystis sp. PCC 6803 (Synechocystis) and rod-shaped Synechococcus sp. PCC 7002 (Synechococcus) cells. We developed a model of the cyanobacterial membrane, which indicated that hydrocarbons aggregate in the middle of the lipid bilayer and, when present at levels observed in cells, lead to membrane swelling associated with pools of hydrocarbon. This suggested that alkanes may facilitate membrane curvature. In vivo measurements of Synechococcus thylakoid membrane conformation are consistent with this model.  相似文献   
127.
Planta - Du ring on-tree ripening, the pectin distribution changed from polydispersed in cell wall to cumulated in cell wall corners. During apple storage, the pectin distribution returned to...  相似文献   
128.
Babesia parasites cause a malaria‐like febrile illness by infection of red blood cells (RBCs). Despite the growing importance of this tick‐borne infection, its basic biology has been neglected. Using novel synchronization tools, the sequence of intra‐erythrocytic events was followed from invasion through development and differentiation to egress. The dynamics of the parasite population were studied in culture, revealing for the first time, the complete array of morphological forms in a precursor–product relationship. Important chronological constants including Babesia's highly unusual variable intra‐erythrocytic life cycle, the life span of each population of infected cells and the time required for the genesis of the different parasite stages were elucidated. Importantly, the maintenance of specific ratios of the infected RBC populations was shown to be responsible for the parasites' choice of developmental pathways, enabling swift responses to changing environmental conditions like availability of RBCs and nutrition. These results could impact the control of parasite proliferation and therefore disease.  相似文献   
129.
Since several decades, the prodrug concept has raised considerable interest in cancer research due to its potential to overcome common problems associated with chemotherapy. However, for small‐molecule tyrosine kinase inhibitors, which also cause severe side effects, hardly any strategies to generate prodrugs for therapeutic improvement have been reported so far. Here, we present the synthesis and biological investigation of a cathepsin B‐cleavable prodrug of the VEGFR inhibitor sunitinib. Cell viability assays and Western blot analyses revealed, that, in contrast to the non‐cathepsin B‐cleavable reference compound, the prodrug shows activity comparable to the original drug sunitinib in the highly cathepsin B‐expressing cell lines Caki‐1 and RU‐MH. Moreover, a cathepsin B cleavage assay confirmed the desired enzymatic activation of the prodrug. Together, the obtained data show that the concept of cathepsin B‐cleavable prodrugs can be transferred to the class of targeted therapeutics, allowing the development of optimized tyrosine kinase inhibitors for the treatment of cancer.  相似文献   
130.
Introduction: The term cardiorenal syndrome (CRS) describes the progressive pathology and interactions that develop upon heart and kidney failure. The definition of CRS is not firmly established and has evolved gradually during the last decade. The main clinical challenges associated with CRS are the lack of tools for early disease diagnosis and the inability to predict the development of cardiorenal pathophysiology. Currently several biomarkers have been proposed for improving CRS patient management. However, validation studies are needed to implement these initial findings to the clinical setting.

Areas covered: In this review the database PubMed was used for a literature search on the definition and classification of CRS as well as biomarkers for CRS diagnosis and prognosis.

Expert opinion: A universally acceptable classification system for CRS is not available. Thus, acquiring mechanistic insights relative to the pathophysiology of the disease is challenging. Reported biomarkers include well-established markers for heart/renal dysfunction and inflammation. Some proteins expressed in both organs have also been associated with CRS, yet their link to disease pathophysiology and organ cross-talk is missing. Establishing the link between deregulated molecular pathways and CRS phenotypes is required to define biological relevance of existing findings and ultimately biology-driven markers and targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号