首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   566篇
  免费   34篇
  2023年   5篇
  2022年   4篇
  2021年   20篇
  2020年   14篇
  2019年   15篇
  2018年   18篇
  2017年   11篇
  2016年   19篇
  2015年   31篇
  2014年   37篇
  2013年   37篇
  2012年   55篇
  2011年   41篇
  2010年   26篇
  2009年   18篇
  2008年   25篇
  2007年   38篇
  2006年   28篇
  2005年   31篇
  2004年   29篇
  2003年   19篇
  2002年   17篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   9篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1978年   2篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1970年   1篇
排序方式: 共有600条查询结果,搜索用时 31 毫秒
111.
The conservation of desirable properties in foods and ingredients is often based on the maintenance of the amorphous metastable properties of the systems. Enzymes may be stabilized by drying in saccharide matrices, but a second excipient is generally required to improve sugar protective effects. The effect of electrolytes on the thermophysical properties of sugar systems is of special interest because of their major influence on water structure and their possible interactions with biomolecules. Salts affect the kinetics of very important changes in sugar systems such as crystallization. The purpose of the present work was to analyze fungal β-galactosidase stability in supercooled systems of trehalose-containing electrolytes (water soluble acetates, citrates, and chlorides of magnesium and potassium). The degree of sugar crystallization was also related to enzyme stability. Potassium citrate and acetate improved enzyme stability during freeze-drying and thermal treatment of samples at water activity (a w) of 0.22. However, trehalose crystallization inhibition at a w = 0.43 (which was about 50–60%, related to the system without salt) impaired enzyme protection. Certain salts may act retarding sugar crystallization, but in the presence of salts, trehalose crystallization is even more critical because the enzyme is confined in a highly salt-concentrated region. Thus, crystallization inhibition by sugar–salt combinations should be carefully conducted. Santagapita, Research Fellow, CONICET, Argentina. Buera, Member of CONICET, Argentina. An erratum to this article can be found at  相似文献   
112.
113.
Squamous cell carcinoma (SCC) of the oral cavity is one of the most common neoplasms in the world. During the past 2 decades, the role of high-risk human papilloma virus (HR-HPV) has been studied and the data supporting HPV as a one of the causative agents in the development and progression of a sub-set of head and neck squamous cell carcinomas (HNSCC) has accumulated. In order to investigate the role of HR-HPV oncogene expression in early epithelial alterations in vivo, we produced transgenic mice expressing HPV16 early region genes from the promoter of the bovine keratin 6 gene (Tg[bK6-E6/E7]). In this article, we demonstrate that E6/E7 transgene was abundantly expressed and cellular proliferation was increased in the middle tongue epithelia of transgenic mice, and that in the same region young (27 weeks old) Tg[bK6-E6/E7] mice spontaneously developed histological alterations, mainly focal epithelial hyperplasia (FEH).  相似文献   
114.
Antibodies provide a sensitive indicator of proteins displayed by bacteria during sepsis. Because signals produced by infection are naturally amplified during the antibody response, host immunity can be used to identify biomarkers for proteins that are present at levels currently below detectable limits. We developed a microarray comprising ∼70% of the 4066 proteins contained within the Yersinia pestis proteome to identify antibody biomarkers distinguishing plague from infections caused by other bacterial pathogens that may initially present similar clinical symptoms. We first examined rabbit antibodies produced against proteomes extracted from Y. pestis, Burkholderia mallei, Burkholderia cepecia, Burkholderia pseudomallei, Pseudomonas aeruginosa, Salmonella typhimurium, Shigella flexneri, and Escherichia coli, all pathogenic Gram-negative bacteria. These antibodies enabled detection of shared cross-reactive proteins, fingerprint proteins common for two or more bacteria, and signature proteins specific to each pathogen. Recognition by rabbit and non-human primate antibodies involved less than 100 of the thousands of proteins present within the Y. pestis proteome. Further antigen binding patterns were revealed that could distinguish plague from anthrax, caused by the Gram-positive bacterium Bacillus anthracis, using sera from acutely infected or convalescent primates. Thus, our results demonstrate potential biomarkers that are either specific to one strain or common to several species of pathogenic bacteria.Plague is a disease of historical epidemics that remains an important public health problem in limited areas of the world (1). Disease transmission usually occurs through transfer of the bacillus Yersinia pestis by the bite of a flea. However, less frequent direct transfer of viable bacteria by respiratory droplets may result in primary pneumonic infection. A transient intracellular infection of phagocytic cells (2) occurs during the earliest stage of bubonic plague followed by rapid extracellular expansion of bacteria in lymph nodes. The prototypical lymphatic infection of bubonic plague may also progress to bacteremic or pneumonic infection with a very high rate of fatality if there is not rapid intervention by antibiotic treatment (3). Among the reported cases occurring annually in the United States, 15% were fatal in 2006 (4). Although only small numbers of human cases occur each year in North America, a more substantial incidence of plague is found in wild animal populations (5) with seroprevalence rates of up to 100% among mammalian carnivores in endemic areas (6). The geographic range of infection within feral populations is presently unknown but may contribute significantly to the reservoir of potential disease transmission to humans.Diagnostic tests and prophylactic vaccines or therapies must rapidly distinguish or protect against the many infectious diseases that present similar initial symptoms. Specific diagnostic tests and vaccines for plague are public health priorities primarily because of the threat from potential acts of terrorism. Because human deaths may occur within 48 h of infection (7), delays in proper diagnosis have led to disease complications and fatalities from plague (8). Yet the identification of bacterial sepsis at the earliest stage of clinical presentation is challenging because of the generalized nature of disease symptoms and the difficulty in culturing infectious agents or isolating sufficient material to identify the infectious agent by amplification of genetic markers. Although host antibody responses provide a sensitive indicator of current or past infection, insufficient numbers of validated biomarkers are available, and extensive antibody cross-reactivity among Gram-negative pathogens (912) complicates the direct analysis of serum.Identification of plague-specific antibody interactions is a daunting task because of the complexity of the bacterial proteome encountered by the host during infection. The chromosome of Y. pestis CO92 encodes ∼3885 proteins, whereas an additional 181 are episomally expressed by pCD1, pMT1, and pPCP1. For comparison, the proteome of Y. pestis KIM1 contains 4202 individual proteins (13), 87% in common with CO92 (14), and the closely related enteric pathogen Yersinia pseudotuberculosis (15, 16) contains ∼4038 proteins (chromosome plus plasmids). Recent technical advances have facilitated the development of microarrays comprising full-length, functional proteins that represent nearly complete proteomes. For example, Zhu et al. (17) reported the development of a proteome microarray containing the full-length, purified expression products of over 93% of the 6280 protein-coding genes of the yeast Saccharomyces cerevisiae, and Schmid et al. (18) described the human antibody repertoire for vaccinia virus recognition by using a viral proteome microarray. This approach opens the possibility of examining the entire bacterial proteome to elucidate proteins or protein pathways that are essential to pathogenicity or host immunity. We sought to identify biomarkers that could distinguish plague from diseases caused by other bacterial pathogens by measuring host antibody recognition of individual proteins contained within the Y. pestis proteome. The previously reported genomic sequences of Y. pestis strains KIM (13) and CO92 (14), sharing 95% identity, were used for reference. Approximately 77% of the putative Y. pestis proteome can be classified by known homologies. We successfully expressed and purified the majority (70%) of the 4066 ORFs encoded by the chromosome and plasmids of Y. pestis KIM and arrayed these products onto glass slides coated with nitrocellulose. The Y. pestis ORFs subcloned into expression vectors were fully sequenced to confirm quality and identity before use. Different approaches for studying the antibody repertoire for plague in rabbits and non-human primates were compared. Based on results from experiments using the Y. pestis proteome microarray, we identified new candidates for antibody biomarkers of bacterial infections and patterns of cross-reactivity that may be useful diagnostic tools.  相似文献   
115.
Accurate determination of the evolutionary relationships between genes is a foundational challenge in biology. Homology—evolutionary relatedness—is in many cases readily determined based on sequence similarity analysis. By contrast, whether or not two genes directly descended from a common ancestor by a speciation event (orthologs) or duplication event (paralogs) is more challenging, yet provides critical information on the history of a gene. Since 2009, this task has been the focus of the Quest for Orthologs (QFO) Consortium. The sixth QFO meeting took place in Okazaki, Japan in conjunction with the 67th National Institute for Basic Biology conference. Here, we report recent advances, applications, and oncoming challenges that were discussed during the conference. Steady progress has been made toward standardization and scalability of new and existing tools. A feature of the conference was the presentation of a panel of accessible tools for phylogenetic profiling and several developments to bring orthology beyond the gene unit—from domains to networks. This meeting brought into light several challenges to come: leveraging orthology computations to get the most of the incoming avalanche of genomic data, integrating orthology from domain to biological network levels, building better gene models, and adapting orthology approaches to the broad evolutionary and genomic diversity recognized in different forms of life and viruses.  相似文献   
116.
117.
118.
119.
120.
Electrical excitability and signaling, frequently associated with rapid responses to environmental stimuli, have been documented in both animals and higher plants. The presence of electrical potentials (EPs), such as action potentials (APs) and variation potentials (VPs), in plant cells suggests that plants make use of ion channels to transmit information over long distances. The reason why plants have developed pathways for electrical signal transmission is most probably the necessity to respond rapidly, for example, to environmental stress factors.We examined the nature and specific characteristics of the electrical response to wounding in the woody plant Persea americana (avocado). Under field conditions, wounds can be the result of insect activity, strong winds or handling injury during fruit harvest. Evidence for extracellular EP signaling in avocado trees after mechanical injury was expressed in the form of variation potentials. For tipping and pruning, signal velocities of 8.7 and 20.9 cm/s, respectively, were calculated, based on data measured with Ag/AgCl microelectrodes inserted at different positions of the trunk. EP signal intensity decreased with increasing distance between the tipping and pruning point and the electrode. Recovery time to pre-tipping or pre-pruning EP values was also affected by the distance and signal intensity from the tipping or pruning point to the specific electrode position. Real time detection of remote EP signaling can provide an efficient tool for the early detection of insect attacks, strong wind damage or handling injury during fruit harvest.Our results indicate that electrical signaling in avocado, resulting from microenvironment modifications, can be quantitatively related to the intensity and duration of the stimuli, as well as to the distance between the stimuli site and the location of EP detection. These results may be indicative of the existence of a specific kind of proto-nervous system in plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号