首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1092篇
  免费   90篇
  国内免费   1篇
  2022年   6篇
  2021年   26篇
  2020年   11篇
  2019年   16篇
  2018年   21篇
  2017年   12篇
  2016年   24篇
  2015年   52篇
  2014年   44篇
  2013年   75篇
  2012年   55篇
  2011年   67篇
  2010年   35篇
  2009年   44篇
  2008年   51篇
  2007年   53篇
  2006年   43篇
  2005年   44篇
  2004年   42篇
  2003年   53篇
  2002年   27篇
  2001年   29篇
  2000年   35篇
  1999年   29篇
  1998年   11篇
  1997年   6篇
  1996年   9篇
  1995年   6篇
  1994年   8篇
  1993年   4篇
  1992年   29篇
  1991年   15篇
  1990年   24篇
  1989年   17篇
  1988年   15篇
  1987年   17篇
  1986年   15篇
  1985年   12篇
  1984年   11篇
  1983年   6篇
  1982年   7篇
  1981年   5篇
  1980年   11篇
  1979年   6篇
  1978年   9篇
  1977年   5篇
  1976年   9篇
  1974年   4篇
  1973年   7篇
  1972年   3篇
排序方式: 共有1183条查询结果,搜索用时 15 毫秒
91.
Matrix metalloproteinase (MMP), a protease enzyme, participates in proteolytic cleavage of extracellular matrix proteins from Drosophila and mammals. But, recent studies have revealed other physiologically important roles of MMP in Drosophila. MMP contributes to cardioblast movement and distribution of collagen proteins during cardiogenesis in developing Drosophila. Tissue remodeling, especially tracheal development is also maintained by MMP. MMP regulates certain immunological functions in Drosophila such as wound repairing, plasmatocyte assemblage at the injured site of the basement membrane and glial response to axon degeneration in Drosophila nervous system. But, the contribution of MMP to tumor formation and metastasis in Drosophila has made it an interesting topic among researchers. Ovulation and egg laying are also found to be affected positively by MMP in Drosophila.  相似文献   
92.
Mycopathologia - Literature on COVID-19-associated pulmonary mucormycosis (CAPM) is sparse. Pulmonary artery pseudoaneurysm (PAP) is an uncommon complication of pulmonary mucormycosis (PM), and...  相似文献   
93.
Mycopathologia - In experimental models, the expression of glucose-regulated protein 78 (GRP78) in endothelial cells played a role in the pathogenesis of mucormycosis. However, the role of GRP78 in...  相似文献   
94.
Plant growth and survival depends critically on photo assimilates. Pathogen infection leads to changes in carbohydrate metabolism of plants. In this study, we monitored changes in the carbohydrate metabolism in the grapevine inflorescence and leaves using Botrytis cinerea and Botrytis pseudo cinerea. Fluctuations in gas exchange were correlated with variations in chlorophyll a fluorescence. During infection, the inflorescences showed an increase in net photosynthesis (Pn) with a stomatal limitation. In leaves, photosynthesis decreased, with a non‐stomatal limitation. A decrease in the effective photosystem II (PSII) quantum yield (ΦPSII) was accompanied by an increase in photochemical quenching (qP) and non‐photochemical quenching (qN). The enhancement of qP and ΦPSII could explain the observed increase in Pn. In leaves, the significant decline in ΦPSII and qP, and increase in qN suggest that energy was mostly oriented toward heat dissipation instead of CO2 fixation. The accumulation of glucose and sucrose in inflorescences and glucose and fructose in the leaves during infection indicate that the plant's carbon metabolism is differently regulated in these two organs. While a strong accumulation of starch was observed at 24 and 48 hours post‐inoculation (hpi) with both species of Botrytis in the inflorescences, a significant decrease with B. cinerea at 24 hpi and a significant increase with B. pseudo cinerea at 48 hpi were observed in the leaves. On the basis of these results, it can be said that during pathogen attack, the metabolism of grapevine inflorescence and leaf is modified suggesting distinct mechanisms modifying gas exchange, PSII activity and sugar contents in these two organs.  相似文献   
95.
96.
97.

Background

Sterol glycosyltransferases (SGTs) are ubiquitous but one of the most diverse group of enzymes of glycosyltransferases family. Members of this family modulate physical and chemical properties of secondary plant products important for various physiological processes. The role of SGTs has been demonstrated in the biosynthesis of pharmaceutically important molecules of medicinal plants like Withania somnifera.

Results

Analysis suggested conserved behaviour and high similarity in active sites of WsSGTs with other plant GTs. Substrate specificity of WsSGTs were analysed through docking performance of WsSGTs with different substrates (sterols and withanolides). Best docking results of WsSGTL1 in the form of stable enzyme-substrate complex having lowest binding energies were obtained with brassicasterol, transandrosteron and WsSGTL4 with solasodine, stigmasterol and 24-methylene cholesterol.

Conclusion

This study reveals topological characters and conserved nature of two SGTs from W. somnifera (WsSGTs) i.e. WsSGTL1 and WsSGTL4. However, besides being ubiquitous in nature and with broad substrate specificity, difference between WsSGTL1 and WsSGTL4 is briefly described by difference in stability (binding energy) of enzyme-substrate complexes through comparative docking.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0563-7) contains supplementary material, which is available to authorized users.  相似文献   
98.
A pentachlorophenol (PCP) degrading bacterium was isolated and characterized from sludge of pulp and paper mill. This isolate used PCP as its sole source of carbon and energy and was capable of degrading this compound, as indicated by stoichiometric release of chloride and biomass formation. Based on morphology, biochemical tests, and 16S rRNA gene sequence analysis this strain was identified as Kocuria sp. CL2. High Performance Liquid Chromatography (HPLC) analysis revealed that this strain was able to degrade PCP up to a concentration of 600 mg/l. This is first time we are reporting the degradation of PCP by the Kocuria species. This isolate was also able to remove 58.64% of PCP from the sludge within two weeks. This study showed that the removal efficiency of PCP by CL2 was found to be very effective and can be used in degradation of PCP containing pulp paper mill waste in the environment.  相似文献   
99.

Purpose

Ginseng (Araliaceae), demonstrates widespread biological effects because of its purported antioxidant and other properties. The present study was undertaken to investigate the effects of American ginseng root extract on glucose-induced oxidative stress and associated oxidative damage to human umbilical vein endothelial cells (HUVECs).

Methods

Following pretreatment with various concentrations of ginseng (alcoholic extract), HUVECs were incubated with various concentrations of d-glucose ranging from 5 to 25 mmol/l for 24 h. l-Glucose was used at a concentration of 25 mmol/l as a control.

Results

Glucose-induced oxidative stress detected by intracellular reactive oxygen species accumulation, superoxide anion generation and DNA damage in HUVECs were significantly prevented by ginseng. Treatment of HUVECs with ginseng further led to significant prevention of glucose-induced NF-κB activation. Glucose-induced increase in fibronectin (FN), EDB+FN (a splice variant of FN), endothelin-1 (ET-1) and vascular endothelial growth factor (VEGF) mRNAs and protein levels were also prevented by ginseng treatment.

Conclusion

These data indicate that American ginseng prevented glucose-induced damage in the HUVECs through its antioxidant properties.  相似文献   
100.
Chloroplast movement in response to changing light conditions optimizes photosynthetic light absorption. This repositioning is stimulated by blue light perceived via the phototropin photoreceptors and is transduced to the actin cytoskeleton. Some actin-based motility systems use filament reorganizations rather than myosin-based translocations. Recent research favors the hypothesis that chloroplast movement is driven by actin reorganization at the plasma membrane, but no proteins affecting chloroplast movements have been shown to associate with both the plasma membrane and actin filaments in vivo. Here we identified THRUMIN1 as a critical link between phototropin photoreceptor activity at the plasma membrane and actin-dependent chloroplast movements. THRUMIN1 bundles filamentous actin in vitro, and it localizes to the plasma membrane and displays light- and phototropin-dependent localization to microfilaments in vivo. These results suggest that phototropin-induced actin bundling via THRUMIN1 is important for chloroplast movement. A mammalian homolog of THRUMIN1, GRXCR1, has been implicated in auditory responses and hair cell stereocilla development as a regulator of actin architecture. Studies of THRUMIN1 will help elucidate the function of this family of eukaryotic proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号