首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Withania somnifera, sterol molecules of immense medicinal value are diversified by means of glycosylation. Identifying sterol glycosyltransferases provides an imperative insight of diverse sterol modifications, thereby helping to comprehend the underlying plant mechanisms. In the present study, one of the W. somnifera sterol glycosyltransferase-4 (Ws-Sgtl4) gene was transformed into the W. somnifera leaf explant through Agrobacterium rhizogene. Transformed W. Somnifera Ws-Sgtl4 leaf explants were subjected to hairy root induction and analyzed for biomass accumulation. The analysis of Ws-Sgtl4 gene expression was performed at different time exposures with the application of salicylic acid and methyl jasmonate. The elicitation of W. somnifera hairy root expressing the Ws-Sgtl4 gene was also evaluated for the enhancement if any, in the total withanolide yield as well as the withanolides-A contents. The results suggested that Ws-Sgtl4 gene expression enhanced the production of total withanolide yield and withanolides-A in the hairy root culture of W. somnifera in the response to the elicitors.  相似文献   

2.
3.
4.
5.

Background

Sterol glycosyltrnasferases (SGT) are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant’s adaptation to abiotic stress.

Methodology

The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses - salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA) and the 3D structures were predicted by using Discovery Studio Ver. 2.5.

Results

The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana.

Conclusions

Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found to have stress responsive elements. The 3D structure showed functional similarity with sterol glycosyltransferases.  相似文献   

6.

Background

Bacterial interactions with the environment- and/or host largely depend on the bacterial glycome. The specificities of a bacterial glycome are largely determined by glycosyltransferases (GTs), the enzymes involved in transferring sugar moieties from an activated donor to a specific substrate. Of these GTs their coding regions, but mainly also their substrate specificity are still largely unannotated as most sequence-based annotation flows suffer from the lack of characterized sequence motifs that can aid in the prediction of the substrate specificity.

Results

In this work, we developed an analysis flow that uses sequence-based strategies to predict novel GTs, but also exploits a network-based approach to infer the putative substrate classes of these predicted GTs. Our analysis flow was benchmarked with the well-documented GT-repertoire of Campylobacter jejuni NCTC 11168 and applied to the probiotic model Lactobacillus rhamnosus GG to expand our insights in the glycosylation potential of this bacterium. In L. rhamnosus GG we could predict 48 GTs of which eight were not previously reported. For at least 20 of these GTs a substrate relation was inferred.

Conclusions

We confirmed through experimental validation our prediction of WelI acting upstream of WelE in the biosynthesis of exopolysaccharides. We further hypothesize to have identified in L. rhamnosus GG the yet undiscovered genes involved in the biosynthesis of glucose-rich glycans and novel GTs involved in the glycosylation of proteins. Interestingly, we also predict GTs with well-known functions in peptidoglycan synthesis to also play a role in protein glycosylation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-349) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.

Background

The dense phytoplankton blooms that characterize productive regions and seasons in the oceans are dominated, from high to low latitudes and from coast line to open ocean, by comparatively few, often cosmopolitan species of diatoms. These key dominant species may undergo dramatic changes due to global climate change.

Results

In order to identify molecular stress-indicators for the ubiquitous diatom species Skeletonema marinoi, we tested stress-related genes in different environmental conditions (i.e. nutrient starvation/depletion, CO2-enrichment and combined effects of these stressors) using RT-qPCR. The data show that these stressors impact algal growth rate, inducing early aging and profound changes in expression levels of the genes of interest.

Conclusions

Most analyzed genes (e.g. antioxidant-related and aldehyde dehydrogenases) were strongly down-regulated which may indicate a strategy to avoid unnecessary over-investment in their respective proteins. By contrast, key genes were activated (e.g. HSPs, GOX) which may allow the diatom species to better cope with adverse conditions. We propose the use of this panel of genes as early bio-indicators of environmental stress factors in a changing ocean.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1574-5) contains supplementary material, which is available to authorized users.  相似文献   

9.

Background

Pseudomonas aeruginosa is known to be a multidrug resistant opportunistic pathogen. Particularly, P. aeruginosa PAO1 polyphosphate kinase mutant (ppk1) is deficient in motility, quorum sensing, biofilm formation and virulence.

Findings

By using Phenotypic Microarrays (PM) we analyzed near 2000 phenotypes of P. aeruginosa PAO1 polyP kinase mutants (ppk1 and ppk2). We found that both ppk mutants shared most of the phenotypic changes and interestingly many of them related to susceptibility toward numerous and different type of antibiotics such as Ciprofloxacin, Chloramphenicol and Rifampicin.

Conclusions

Combining the fact that ppk1 mutants have reduced virulence and are more susceptible to antibiotics, polyP synthesis and particularly PPK1, is a good target for the design of molecules with anti-virulence and anti-persistence properties.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0012-0) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.

Background

Although Imatinib mesylate has revolutionized the treatment of chronic myeloid leukemia, some patients develop resistance with progression of leukemia. Alternative or additional targeting of signalling pathways deregulated in Bcr-Abl-driven chronic myeloid leukemia may provide a feasible option for improving clinical response and overcoming resistance.

Results

In this study, we investigate ability of CR8 isomers (R-CR8 and S-CR8) and MR4, three derivatives of the cyclin-dependent kinases (CDKs) inhibitor Roscovitine, to exert anti-leukemic activities against chronic myeloid leukemia in vitro and then, we decipher their mechanisms of action. We show that these CDKs inhibitors are potent inducers of growth arrest and apoptosis of both Imatinib-sensitive and –resistant chronic myeloid leukemia cell lines. CR8 and MR4 induce dose-dependent apoptosis through mitochondrial pathway and further caspases 8/10 and 9 activation via down-regulation of short-lived survival and anti-apoptotic factors Mcl-1, XIAP and survivin which are strongly implicated in survival of Bcr-Abl transformed cells.

Conclusions

These results suggest that CDK inhibitors may constitute a complementary approach to treat chronic myeloid leukemia.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0163-x) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.
14.
15.
16.

Background

The extent of intratumoral mutational heterogeneity remains unclear in gliomas, the most common primary brain tumors, especially with respect to point mutation. To address this, we applied single molecule molecular inversion probes targeting 33 cancer genes to assay both point mutations and gene amplifications within spatially distinct regions of 14 glial tumors.

Results

We find evidence of regional mutational heterogeneity in multiple tumors, including mutations in TP53 and RB1 in an anaplastic oligodendroglioma and amplifications in PDGFRA and KIT in two glioblastomas (GBMs). Immunohistochemistry confirms heterogeneity of TP53 mutation and PDGFRA amplification. In all, 3 out of 14 glial tumors surveyed have evidence for heterogeneity for clinically relevant mutations.

Conclusions

Our results underscore the need to sample multiple regions in GBM and other glial tumors when devising personalized treatments based on genomic information, and furthermore demonstrate the importance of measuring both point mutation and copy number alteration while investigating genetic heterogeneity within cancer samples.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0530-z) contains supplementary material, which is available to authorized users.  相似文献   

17.

Background

Domestic goats (Capra hircus) have been selected to play an essential role in agricultural production systems, since being domesticated from their wild progenitor, bezoar (Capra aegagrus). A detailed understanding of the genetic consequences imparted by the domestication process remains a key goal of evolutionary genomics.

Results

We constructed the reference genome of bezoar and sequenced representative breeds of domestic goats to search for genomic changes that likely have accompanied goat domestication and breed formation. Thirteen copy number variation genes associated with coat color were identified in domestic goats, among which ASIP gene duplication contributes to the generation of light coat-color phenotype in domestic goats. Analysis of rapidly evolving genes identified genic changes underlying behavior-related traits, immune response and production-related traits.

Conclusion

Based on the comparison studies of copy number variation genes and rapidly evolving genes between wild and domestic goat, our findings and methodology shed light on the genetic mechanism of animal domestication and will facilitate future goat breeding.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1606-1) contains supplementary material, which is available to authorized users.  相似文献   

18.
19.

Background

Gene prediction is a challenging but crucial part in most genome analysis pipelines. Various methods have evolved that predict genes ab initio on reference sequences or evidence based with the help of additional information, such as RNA-Seq reads or EST libraries. However, none of these strategies is bias-free and one method alone does not necessarily provide a complete set of accurate predictions.

Results

We present IPred (Integrative gene Prediction), a method to integrate ab initio and evidence based gene identifications to complement the advantages of different prediction strategies. IPred builds on the output of gene finders and generates a new combined set of gene identifications, representing the integrated evidence of the single method predictions.

Conclusion

We evaluate IPred in simulations and real data experiments on Escherichia Coli and human data. We show that IPred improves the prediction accuracy in comparison to single method predictions and to existing methods for prediction combination.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1315-9) contains supplementary material, which is available to authorized users.  相似文献   

20.

Background

The growth and development of the posterior silk gland and the biosynthesis of the silk core protein at the fifth larval instar stage of Bombyx mori are of paramount importance for silk production.

Results

Here, aided by next-generation sequencing and microarry assay, we profile 1,229 microRNAs (miRNAs), including 728 novel miRNAs and 110 miRNA/miRNA* duplexes, of the posterior silk gland at the fifth larval instar. Target gene prediction yields 14,222 unique target genes from 1,195 miRNAs. Functional categorization classifies the targets into complex pathways that include both cellular and metabolic processes, especially protein synthesis and processing.

Conclusion

The enrichment of target genes in the ribosome-related pathway indicates that miRNAs may directly regulate translation. Our findings pave a way for further functional elucidation of these miRNAs and their targets in silk production.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-410) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号