首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3991篇
  免费   316篇
  2023年   21篇
  2021年   60篇
  2020年   45篇
  2019年   51篇
  2018年   53篇
  2017年   57篇
  2016年   103篇
  2015年   185篇
  2014年   212篇
  2013年   202篇
  2012年   306篇
  2011年   294篇
  2010年   225篇
  2009年   173篇
  2008年   250篇
  2007年   222篇
  2006年   226篇
  2005年   211篇
  2004年   210篇
  2003年   199篇
  2002年   220篇
  2001年   30篇
  2000年   22篇
  1999年   44篇
  1998年   55篇
  1997年   43篇
  1996年   41篇
  1995年   35篇
  1994年   34篇
  1993年   41篇
  1992年   26篇
  1991年   29篇
  1990年   14篇
  1989年   36篇
  1988年   28篇
  1987年   17篇
  1986年   18篇
  1985年   10篇
  1984年   20篇
  1983年   16篇
  1982年   25篇
  1981年   18篇
  1980年   14篇
  1979年   13篇
  1978年   15篇
  1977年   13篇
  1976年   13篇
  1974年   14篇
  1973年   14篇
  1970年   9篇
排序方式: 共有4307条查询结果,搜索用时 153 毫秒
971.
Under specific conditions Penicillium simplicissimum excretes large amounts of organic acids, mainly citrate. As the energetic status of the hyphae might play a role in that respect, we developed a method for the determination of adenine (adenosine triphosphate, adenosine diphosphate, and adenosine monophosphate) and pyridine (nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide (NADH)) nucleotides in hyphae of P. simplicissimum. An optimum separation of the five compounds in less than 15 min was possible on a C-8 column, utilizing 50 mM aqueous triethylamine-buffer (pH 6.5) and acetonitrile as mobile phase; detection was performed at 254 nm. With the exception of NADH, which could not be determined accurately due to stability problems, the method was sensitive (LOD < or = 0.7 ng on-column), repeatable (sigma(rel) < or = 4.4%), accurate (recovery rates between 97.9 and 104.9%), and precise (intraday variation < or = 9.4%, interday variation < or = 6.2 %). For an optimum extraction of the nucleotides the chemostat samples were directly placed into hot (90 degrees C) 50% ethanol, and shaken for 10 min, followed by evaporation of the solvent and a solid phase extraction cleanup of the redissolved aqueous samples. With this method the nucleotide concentrations in hyphae from a glucose-limited chemostat culture and the respective energy charge were determined. Additionally, the effect of the time lag between sampling and extraction and the effect of a glucose pulse on nucleotide concentrations were determined.  相似文献   
972.
Clapp CH  Strulson M  Rodriguez PC  Lo R  Novak MJ 《Biochemistry》2006,45(51):15884-15892
Soybean lipoxygenase-1 (SBLO-1) catalyzes the oxygenation of polyunsaturated fatty acids to produce conjugated diene hydroperoxides. Previous work from our laboratories has demonstrated that SBLO-1 will also catalyze the oxygenation of monounsaturated acids (Clapp, C. H., Senchak, S. E., Stover, T. J., Potter, T. C., Findeis, P. M., and Novak, M. J. (2001) Soybean Lipoxygenase-Mediated Oxygenation of Monounsaturated Fatty Acids to Enones, J. Am. Chem. Soc. 123, 747-748). Interestingly, the products are alpha,beta-unsaturated ketones rather than the expected allylic hydroperoxides. In the present work, we provide evidence that the monoolefin substrates are initially converted to allylic hydroperoxides, which are subsequently converted to the enone products. The hydroperoxide intermediates can be trapped by reduction to the corresponding allylic alcohols with glutathione peroxidase plus glutathione or with SnCl2. Under some conditions, the hydroperoxide intermediates accumulate and can be detected by HPLC and peroxide assays. Kinetics measurements at low concentrations of [1-14C]-9(Z)-octadecenoic acid indicate that oxygenation of this substrate at 25 degrees C, pH 9.0 occurs with kcat/Km = 1.6 (+/-0.1) x 10(2) M-1 s-1, which is about 105 lower than kcat/Km for oxygenation of 9(Z),12(Z)-octadecadienoic acid (linoleic acid). Comparison of the activities of 9(Z)-octadecenoic acid and 12(Z)-octadecenoic acid implies that the two double bonds of linoleic acid contribute almost equally to the C-H bond-breaking step in the normal lipoxygenase reaction. The results are consistent with the notion that SBLO-1 functionalizes substrates by a radical mechanism.  相似文献   
973.
OBJECTIVES: To define the link between the deletion of gene encoding for metalloproteinase 9 and resistance artery reactivity, we studied in vitro smooth muscle and endothelial cell function in response to pressure, shear stress, and pharmacological agents. BACKGROUND: Matrix metalloproteinases play a crucial role in the regulation of extracellular matrix turnover and structural artery wall remodeling. METHODS: Resistance arteries were isolated from mice lacking gene encoding for MMP-9 (KO) and their control (WT). Hemodynamic, pharmacology approaches, and Western blot analysis were used in this study. RESULTS: The measurement of blood pressure in vivo was similar in KO and WT mice. Pressure-induced myogenic tone, contractions to angiotensin-II and phenylephrine were similar in both groups. The inhibition of MMP2/9 ((2R)-2-[(4-biphenylylsulfonyl) amino]-3-phenylpropionic acid) significantly decreased myogenic tone in WT and had no effect in KO mice. Relaxation endothelium-dependent (flow-induced- dilation 41.3+/-0.6 vs. 21+/-1.6 at 10 microl/min in KO and WT mice, respectively, P<0.05) and eNOS expression were increased in KO compared to WT mice. The inhibition of eNOS with L-NAME significantly decreased endothelium response to shear stress, which was more pronounced in KO mice resistance arteries (-26.83+/-2.5 vs. -15.84+/-2.3 at 10 microl/min in KO and WT, respectively, P<0.05). However, the relaxation to exogenous nitric oxide-donor was similar in both groups. CONCLUSION: Our study provides evidence of a selective effect of MMP-9 on endothelium function. Thus, MMP-9 gene deletion specifically increased resistance artery dilation endothelium-dependent and eNOS expression. Based on our results, MMP-9 could be a potential therapeutic target in cardiovascular disease associated with resistance arteries dysfunction.  相似文献   
974.
HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A(2) (PLA(2))/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca(2+)-mobilization and enhanced bradykinin-promoted Ca(2+)-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPARgamma agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs.  相似文献   
975.
Tachycardia may cause substantial molecular and ultrastructural alterations in cardiac tissue. The underlying pathophysiology has not been fully explored. The purpose of this study was (I) to validate a three-dimensional in vitro pacing model, (II) to examine the effect of rapid pacing on mitochondrial function in intact cells, and (III) to evaluate the involvement of L-type-channel-mediated calcium influx in alterations of mitochondria in cardiomyocytes during rapid pacing. In vitro differentiated cardiomyocytes from P19 cells that formed embryoid bodies were paced for 24 h with 0.6 and 2.0 Hz. Pacing at 2.0 Hz increased mRNA expression and phosphorylation of ERK1/2 and caused cellular hypertrophy, indicated by increased protein/DNA ratio, and oxidative stress measured as loss of cellular thiols. Rapid pacing additionally provoked structural alterations of mitochondria. All these changes are known to occur in vivo during atrial fibrillation. The structural alterations of mitochondria were accompanied by limitation of ATP production as evidenced by decreased endogenous respiration in combination with decreased ATP levels in intact cells. Inhibition of calcium inward current with verapamil protected against hypertrophic response and oxidative stress. Verapamil ameliorated morphological changes and dysfunction of mitochondria. In conclusion, rapid pacing-dependent changes in calcium inward current via L-type channels mediate both oxidative stress and mitochondrial dysfunction. The in vitro pacing model presented here reflects changes occurring during tachycardia and, thus, allows functional analyses of the signaling pathways involved.  相似文献   
976.
The cytosolic Ca2+ -binding protein regucalcin is involved in intracellular signaling and present in high abundance in the liver. Here, we could show by comparative mass spectrometry-based proteomics screening of normal versus dystrophic fibres that regucalcin of 33.9 kDa and pI5.2 also exists in diaphragm muscle. Since the expression of sarcolemmal Ca2+ -leak channels and luminal Ca2+ -binding elements is altered in dystrophin-deficient muscle, we initiated this study in order to determine whether additional soluble muscle proteins involved in Ca2+ -handling are affected in muscular dystrophy. Following separation by two-dimensional gel electrophoresis, the spot pattern of the normal versus the mdx diaphragm muscle proteome was evaluated by densitometry. The expression levels of 20 major protein spots were shown to change and their identity determined by mass spectrometry. A 2-fold reduction of regucalcin in mdx diaphragm, as well as in dystrophic limb muscle and heart, was confirmed by immunoblotting in both young and aged mdx mice. The results from our proteomics analysis of dystrophic diaphragm support the concept that abnormal Ca2+ -handling is involved in x-linked muscular dystrophy. The reduction in key Ca2+ -handling proteins may result in an insufficient maintenance of Ca2+ -homeostasis and an abnormal regulation of Ca2+ -dependent enzymes resulting in disturbed intracellular signaling mechanisms in dystrophinopathies.  相似文献   
977.
Cohesion of Myxococcus xanthus cells involves interaction of a cell surface cohesin with a component of the extracellular matrix. In this work, two previously isolated cohesion-defective (fbd) mutants were characterized. The fbdA and fbdB genes do not encode the cohesins but are necessary for their production. Both mutants produce type IV pili, suggesting that PilA is not a major cohesin.  相似文献   
978.
Human sniffing behavior usually involves bouts of short, high flow rate inhalation (>300 ml/s through each nostril) with mostly turbulent airflow. This has often been characterized as a factor enabling higher amounts of odorant to deposit onto olfactory mucosa than for laminar airflow and thereby aid in olfactory detection. Using computational fluid dynamics human nasal cavity models, however, we found essentially no difference in predicted olfactory odorant flux (g/cm2 s) for turbulent versus laminar flow for total nasal flow rates between 300 and 1000 ml/s and for odorants of quite different mucosal solubility. This lack of difference was shown to be due to the much higher resistance to lateral odorant mass transport in the mucosal nasal airway wall than in the air phase. The simulation also revealed that the increase in airflow rate during sniffing can increase odorant uptake flux to the nasal/olfactory mucosa but lower the cumulative total uptake in the olfactory region when the inspired air/odorant volume was held fixed, which is consistent with the observation that sniff duration may be more important than sniff strength for optimizing olfactory detection. In contrast, in rats, sniffing involves high-frequency bouts of both inhalation and exhalation with laminar airflow. In rat nose odorant uptake simulations, it was observed that odorant deposition was highly dependent on solubility and correlated with the locations of different types of receptors.  相似文献   
979.
1alpha,25-dihydroxy vitamin D3 has a major role in the regulation of the bone metabolism as it promotes the expression of key bone-related proteins in osteoblastic cells. In recent years it has become increasingly evident that in addition to its well-established genomic actions, 1alpha,25-dihydroxy vitamin D3 induces non-genomic responses by acting through a specific plasma membrane-associated receptor. Results from several groups suggest that the classical nuclear 1alpha,25-dihydroxy vitamin D3 receptor (VDR) is also responsible for these non-genomic actions of 1alpha,25-dihydroxy vitamin D3. Here, we have used siRNA to suppress the expression of VDR in osteoblastic cells and assessed the role of VDR in the non-genomic response to 1alpha,25-dihydroxy vitamin D3. We report that expression of the classic VDR in osteoblasts is required to generate a rapid 1alpha,25-dihydroxy vitamin D3-mediated increase in the intracellular Ca(2+) concentration, a hallmark of the non-genomic actions of 1alpha,25-dihydroxy vitamin D3 in these cells.  相似文献   
980.
IL-18 is an important cofactor in Th1 immune responses and it has additional roles in inflammation. Recent reports suggest the contribution of IL-18 to immune responses may vary between mouse strains and immune contexts. We investigated the contribution of IL-18 to T-cell activation and joint inflammation in Ag-induced arthritis (AIA) in C57Bl/6 mice. AIA and cutaneous delayed-type hypersensitivity (DTH) reactions were induced in wild-type (WT) and IL-18-/- C57Bl/6 mice, and Ag-specific T-cell proliferation and IFN-gamma and IL-4 production were measured. The humoral immune response was measured as serum antibody to the disease-initiating Ag, methylated BSA (mBSA). Splenocyte production of IL-6 was measured by ELISA. To confirm the dependence of this model on Th1-cell-mediated immunity, IL-12p40-/- mice were similarly studied. WT mice developed synovitis, joint effusion, cartilage destruction and bone damage associated with induction of DTH, and in vitro Ag-specific T-cell proliferation and IFN-gamma production. Unexpectedly, IL-18-/- mice developed AIA and indices of T-cell activation were similar to those of WT mice. In contrast, IL-12p40-/- mice did not develop AIA, DTH or T-cell activation. WT and IL-18-/- mice, but not IL-12p40-/- mice, developed significantly increased serum antibody to mBSA compared with naive controls. WT and IL-18-/- splenocytes produced high levels of IL-6, whereas IL-12p40-/- cells had significantly lower IL-6 production compared with both. In conclusion, IL-18 is redundant both as a Th1 response cofactor and inflammatory cytokine, whereas IL-12p40-/- is a key cytokine, in AIA in C57Bl/6 mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号