首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15753篇
  免费   1481篇
  国内免费   1639篇
  2024年   37篇
  2023年   224篇
  2022年   337篇
  2021年   930篇
  2020年   662篇
  2019年   780篇
  2018年   730篇
  2017年   521篇
  2016年   711篇
  2015年   1059篇
  2014年   1197篇
  2013年   1326篇
  2012年   1468篇
  2011年   1378篇
  2010年   807篇
  2009年   751篇
  2008年   824篇
  2007年   708篇
  2006年   700篇
  2005年   449篇
  2004年   445篇
  2003年   438篇
  2002年   364篇
  2001年   272篇
  2000年   222篇
  1999年   217篇
  1998年   174篇
  1997年   131篇
  1996年   115篇
  1995年   111篇
  1994年   86篇
  1993年   76篇
  1992年   104篇
  1991年   68篇
  1990年   61篇
  1989年   59篇
  1988年   55篇
  1987年   36篇
  1986年   24篇
  1985年   35篇
  1984年   20篇
  1983年   15篇
  1982年   21篇
  1981年   12篇
  1980年   14篇
  1979年   15篇
  1978年   15篇
  1975年   13篇
  1973年   11篇
  1972年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
p47 is the major protein identified in complex with the cytosolic AAA ATPase p97. It functions as an essential cofactor of p97-regulated membrane fusion, which has been suggested to disassemble t-t-SNARE complexes and prepare them for further rounds of membrane fusion. Here, we report the high-resolution NMR structure of the C-terminal domain from p47. It comprises a UBX domain and a 13 residue long structured N-terminal extension. The UBX domain adopts a characteristic ubiquitin fold with a betabetaalphabetabetaalphabeta secondary structure arrangement. Three hydrophobic residues from the N-terminal extension pack closely against a cleft in the UBX domain. We also identify, for the first time, the p97 interaction surface using NMR chemical shift perturbation studies.  相似文献   
992.
993.
Under conditions of high antigenic load during infection with invasive lymphocytic choriomeningitis virus (LCMV) strains, virus can persist by selective clonal exhaustion of antigen-specific CD8(+) T cells. In this work we studied the down-regulation of the virus-specific CD8(+)-T-cell response during a persistent infection of adult mice, with particular emphasis on the contribution of the interferon response in promoting host defense. Studies were conducted by infecting mice deficient in receptors for type I (alpha/beta interferon [IFN-alpha/beta]), type II (IFN-gamma), and both type I and II IFNs with LCMV isolates that vary in their capacity to induce T-cell exhaustion. The main conclusions of this study are as follows. (i) IFNs play a critical role in LCMV infection by reducing viral loads in the initial stages of infection and thus modifying both the extent of CD8(+)-T-cell exhaustion and the course of infection. The importance of IFNs in this context varies with the biological properties of the LCMV strain. (ii) An inverse correlation exists between antigen persistence and responsiveness of virus-specific CD8(+) T cells. This results in distinct programs of activation or tolerance (functional unresponsiveness and/or physical elimination of antigen-specific cells) during acute and chronic virus infections, respectively. (iii) A successful immune response associated with definitive viral clearance requires an appropriate balance between cellular and humoral components of the immune system. We discuss the role of IFNs in influencing virus-specific T cells that determine the outcome of persistent infections.  相似文献   
994.
995.
Wei Y  Cao X  Ou Y  Lu J  Xing C  Zheng R 《Mutation research》2001,490(2):113-121
An immortal human hepatic cell line HL-7702 and human hepatoma cell line SMMC-7721 were treated with 3-30 microM SeO(2). SeO(2) at 30 microM markedly inhibited cell proliferation and viability, and prompted apoptosis of both normal hepatic and hepatoma cells after 48h treatment. SeO(2) could also down-regulate the Bcl-2 level, greatly in HL-7702 and slightly in SMMC-7721 cells, but up-regulate wild type P53 level a little in HL-7702 and significantly in SMMC-7721 cells. The Bcl-2/P53 value was closely correlated with the apoptotic rate as well as SeO(2) concentrations.  相似文献   
996.
Cytosolic and peroxisomal enzymes necessary for methanol assimilation are synthesized when Pichia pastoris is grown in methanol. Upon adaptation from methanol to a glucose environment, these enzymes are rapidly and selectively sequestered and degraded within the yeast vacuole. Sequestration begins when the vacuole changes shape and surrounds the peroxisomes. The opposing membranes then fuse, engulfing the peroxisome. In this study, we have characterized a mutant cell line (glucose-induced selective autophagy), gsa7, which is defective in glucose-induced selective autophagy of peroxisomes, and have identified the GSA7 gene. Upon glucose adaptation, gsa7 cells were unable to degrade peroxisomal alcohol oxidase. We observed that the peroxisomes were surrounded by the vacuole, but complete uptake into the vacuole did not occur. Therefore, we propose that GSA7 is not required for initiation of autophagy but is required for bringing the opposing vacuolar membranes together for homotypic fusion, thereby completing peroxisome sequestration. By sequencing the genomic DNA fragment that complemented the gsa7 phenotype, we have found that GSA7 encodes a protein of 71 kDa (Gsa7p) with limited sequence homology to a family of ubiquitin-activating enzymes, E1. The knockout mutant gsa7Delta had an identical phenotype to gsa7, and both mutants were rescued by an epitope-tagged Gsa7p (Gsa7-hemagglutinin [HA]). In addition, a GSA7 homolog, APG7, a protein required for autophagy in Saccharomyces cerevisiae, was capable of rescuing gsa7. We have sequenced the human homolog of GSA7 and have shown many regions of identity between the yeast and human proteins. Two of these regions align to the putative ATP-binding domain and catalytic site of the family of ubiquitin activating enzymes, E1 (UBA1, UBA2, and UBA3). When either of these sites was mutated, the resulting mutants [Gsa7(DeltaATP)-HA and Gsa7(C518S)-HA] were unable to rescue gsa7 cells. We provide evidence to suggest that Gsa7-HA formed a thio-ester linkage with a 25-30 kDa protein. This conjugate was not observed in cells expressing Gsa7(DeltaATP)-HA or in cells expressing Gsa7(C518S)-HA. Our results suggest that this unique E1-like enzyme is required for homotypic membrane fusion, a late event in the sequestration of peroxisomes by the vacuole.  相似文献   
997.
We investigated the presence of low-molecular-weight iron and ferritin in human atheromas, and their possible relation to the apoptotic process. Arterial wall segments with fatty streaks were collected from coronary arteries and thoracic aortas of 12 clinical autopsy cases with general atherosclerosis. Normal appearing regions from the same cases together with normal coronary arteries from seven young forensic autopsy cases, without any sign of atherosclerosis, were used for comparison. Anti-CD68 (macrophage marker) and anti-ferritin antibodies were applied to serial sections of the arterial wall segments, fixed in formadehyde and embedded in paraffin wax, using an avidin-biotin complex (ABC) technique. Similarly, apoptotic cells were assayed by the TUNEL technique, while low-molecular-weight iron was cytochemically detected by autometallography. Cell counting and computerised image analysis were performed to compare the distribution of macrophages, ferritin- and iron-rich cells, and apoptotic cells in the intima, media, and adventitia of the arteries.

Pronounced ferritin accumulation, occurrence of lysosomal low-molecular-weight iron, and apoptosis mainly concerned CD68-positive cells (macrophages) in the atherosclerotic lesions. No ferritin- or CD68-positivity was found in normal coronary arteries from the young forensic-autopsy cases, while a moderate number of such cells were observed in the intima of normal looking vessel areas from the control cases. In the intima, cytosolic ferritin and low-molecular-weight iron with a lysosomal type distribution were found in many CD68-positive macrophages which frequently were surrounded by erythrocytes. A substantial number of apoptotic cells within the intima, media, and adventitia were registered in all atherosclerotic lesions examined, although mainly in the vulnerable macrophage-enriched areas of the atheroma shoulder.

We suggest that iron may occur within the cytosol, mainly bound in ferritin, but also in low-molecular weight, redox-active form within the acidic vacuolar apparatus of macrophages and macrophage-derived foam cells following erythrophagocytosis or phagocytosis of apoptotic cells. Low-molecular-weight iron within lysosomes, present due to degradation of iron-containing structures, such as ferritin, may partially become exocytosed and contribute to cell-mediated LDL-oxidation. Moreover, such lysosomal iron may also sensitise lysosomes to oxidative stress and induce apoptosis of macrophage/foam-cells that may result in instability and rupture of atherosclerotic plaques.  相似文献   
998.
999.
1000.
Since the isolation and characterization of dwarf1-1 (dwf1-1) from a T-DNA insertion mutant population, phenotypically similar mutants, including deetiolated2 (det2), constitutive photomorphogenesis and dwarfism (cpd), brassinosteroid insensitive1 (bri1), and dwf4, have been reported to be defective in either the biosynthesis or the perception of brassinosteroids. We present further characterization of dwf1-1 and additional dwf1 alleles. Feeding tests with brassinosteroid-biosynthetic intermediates revealed that dwf1 can be rescued by 22alpha-hydroxycampesterol and downstream intermediates in the brassinosteroid pathway. Analysis of the endogenous levels of brassinosteroid intermediates showed that 24-methylenecholesterol in dwf1 accumulates to 12 times the level of the wild type, whereas the level of campesterol is greatly diminished, indicating that the defective step is in C-24 reduction. Furthermore, the deduced amino acid sequence of DWF1 shows significant similarity to a flavin adenine dinucleotide-binding domain conserved in various oxidoreductases, suggesting an enzymatic role for DWF1. In support of this, 7 of 10 dwf1 mutations directly affected the flavin adenine dinucleotide-binding domain. Our molecular characterization of dwf1 alleles, together with our biochemical data, suggest that the biosynthetic defect in dwf1 results in reduced synthesis of bioactive brassinosteroids, causing dwarfism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号