首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   472篇
  免费   44篇
  2023年   2篇
  2021年   10篇
  2020年   7篇
  2019年   10篇
  2018年   12篇
  2017年   5篇
  2016年   21篇
  2015年   33篇
  2014年   26篇
  2013年   31篇
  2012年   39篇
  2011年   39篇
  2010年   18篇
  2009年   16篇
  2008年   17篇
  2007年   20篇
  2006年   13篇
  2005年   18篇
  2004年   18篇
  2003年   17篇
  2002年   17篇
  2001年   11篇
  2000年   9篇
  1999年   10篇
  1998年   10篇
  1997年   7篇
  1996年   7篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1979年   4篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
排序方式: 共有516条查询结果,搜索用时 15 毫秒
61.
62.
63.
A protocol for the induction of androgenesis and plant regeneration from C. arabica cv. Caturra isolated microspores in vitro using colchicine pretreatment has been developed. Microspores were mechanically isolated and then carefully purified. Before colchicine pretreatment, microspores were cultured in a semi-solid medium for further develop and regeneration. Different times of colchicine exposure as well as different concentrations were tested. The best androgenic response was found when microspores were precultured in 100 mg l–1 colchicine for 48 h. The microspore developmental stages responsive to colchicine were late-uninucleated and early binucleated pollen. Flow cytometry and morphological analyses revealed that 95% of regenerated plants were dihaploids (2n=2x=22). However, some doubled dihaploid plants (2n=4x=44) were also obtained, suggesting that not only androgenic induction but also chromosome duplication could be expected as result of colchicine exposure of coffee microspores. This report represents a new approach in the coffee pollen culture, as well as a major step forward to the utilization of haploid technology in coffee breeding.  相似文献   
64.
Host arginase 1 (arg1) expression is a significant contributor to the pathogenesis of progressive visceral leishmaniasis (VL), a neglected tropical disease caused by the intracellular protozoan Leishmania donovani. Previously we found that parasite-induced arg1 expression in macrophages was dependent on STAT6 activation. Arg1 expression was amplified by, but did not require, IL-4, and required de novo synthesis of unknown protein(s). To further explore the mechanisms involved in arg1 regulation in VL, we screened a panel of kinase inhibitors and found that inhibitors of growth factor signaling reduced arg1 expression in splenic macrophages from hamsters with VL. Analysis of growth factors and their signaling pathways revealed that the Fibroblast Growth Factor Receptor 1 (FGFR-1) and Insulin-like Growth Factor 1 Receptor (IGF-1R) and a number of downstream signaling proteins were activated in splenic macrophages isolated from hamsters infected with L. donovani. Recombinant FGF-2 and IGF-1 increased the expression of arg1 in L. donovani infected hamster macrophages, and this induction was augmented by IL-4. Inhibition of FGFR-1 and IGF-1R decreased arg1 expression and restricted L. donovani replication in both in vitro and ex vivo models of infection. Inhibition of the downstream signaling molecules JAK and AKT also reduced the expression of arg1 in infected macrophages. STAT6 was activated in infected macrophages exposed to either FGF-2 or IGF-1, and STAT6 was critical to the FGFR-1- and IGF-1R-mediated expression of arg1. The converse was also true as inhibition of FGFR-1 and IGF-1R reduced the activation of STAT6 in infected macrophages. Collectively, these data indicate that the FGFR/IGF-1R and IL-4 signaling pathways converge at STAT6 to promote pathologic arg1 expression and intracellular parasite survival in VL. Targeted interruption of these pathological processes offers an approach to restrain this relentlessly progressive disease.  相似文献   
65.

Background  

Angiogenesis, the formation of new blood vessels, is a primordial process in development and its dysregulation has a central role in the pathogenesis of many diseases. Angiogenin (ANG), a peculiar member of the RNase A superfamily, is a potent inducer of angiogenesis involved in many different types of cancer, amyotrophic lateral sclerosis and also with a possible role in the innate immune defense. The evolutionary path of this family has been a highly dynamic one, where positive selection has played a strong role. In this work we used a combined gene and protein level approach to determine the main sites under diversifying selection on the primate ANG gene and analyze its structural and functional implications.  相似文献   
66.
Stroke is the most devastating complication after ventricular assist device (VAD) implantation with a 19% incidence and 65% mortality in the pediatric population. Current pediatric VAD technology and anticoagulation strategies alone are suboptimal. VAD implantation assisted by computational methods (CFD) may contribute reducing the risk of cerebral embolization. Representative three-dimensional aortic arch models of an infant and a child were generated. An 8 mm VAD outflow-graft (VAD-OG) anastomosed to the aorta was rendered and CFD was applied to study blood flow patterns. Particle tracks, originating in the VAD, were computed with a Lagrangian phase model and the percentage of particles entering the cerebral vessels was calculated. Eight implantation configurations (infant = 5 and child = 3) and 5 particle sizes (0.5, 1, 2, 3, and 4 mm) were considered. For the infant model, percentage of particles entering the cerebral vessels ranged from 15% for a VAD-OG anastomosed at 90° to the aorta, to 31% for 30° VAD-OG anastomosis (overall percentages: X2 = 10,852, p < 0.0001). For the child model, cerebral embolization ranged from 9% for the 30° VAD-OG anastomosis to 15% for the 60° anastomosis (overall percentages: χ2 = 10,323, p < 0.0001). Using detailed CFD calculations, we demonstrate that the risk of stroke depends significantly on the VAD implantation geometry. In turn, the risk probably depends on patient-specific anatomy. CFD can be used to optimize VAD implantation geometry to minimize stroke risk.  相似文献   
67.
It has been hypothesized that plants can get beneficial trade‐offs from viral infections when grown under drought conditions. However, experimental support for a positive correlation between virus‐induced drought tolerance and increased host fitness is scarce. We investigated whether increased virulence exhibited by the synergistic interaction involving Potato virus X (PVX) and Plum pox virus (PPV) improves tolerance to drought and host fitness in Nicotiana benthamiana and Arabidopsis thaliana. Infection by the pair PPV/PVX and by PPV expressing the virulence protein P25 of PVX conferred an enhanced drought‐tolerant phenotype compared with single infections with either PPV or PVX. Decreased transpiration rates in virus‐infected plants were correlated with drought tolerance in N. benthamiana but not in Arabidopsis. Metabolite and hormonal profiles of Arabidopsis plants infected with the different viruses showed a range of changes that positively correlated with a greater impact on drought tolerance. Virus infection enhanced drought tolerance in both species by increasing salicylic acid accumulation in an abscisic acid‐independent manner. Viable offspring derived from Arabidopsis plants infected with PPV increased relative to non‐infected plants, when exposed to drought. By contrast, the detrimental effect caused by the more virulent viruses overcame potential benefits associated with increased drought tolerance on host fitness.  相似文献   
68.
The common vampire bat, Desmodus rotundus, ranges from South America into northern Mexico in North America. This sanguivorous species of bat feeds primarily on medium to large‐sized mammals and is known to rely on livestock as primary prey. Each year, there are hotspot areas of D. rotundus‐specific rabies virus outbreaks that lead to the deaths of livestock and economic losses. Based on incidental captures in our study area, which is an area of high cattle mortality from D. rotundus transmitted rabies, it appears that D. rotundus are being caught regularly in areas and elevations where they previously were thought to be uncommon. Our goal was to investigate demographic processes and genetic diversity at the north eastern edge of the range of D. rotundus in Mexico. We generated control region sequences (441 bp) and 12‐locus microsatellite genotypes for 602 individuals of D. rotundus. These data were analyzed using network analyses, Bayesian clustering approaches, and standard population genetic statistical analyses. Our results demonstrate panmixia across our sampling area with low genetic diversity, low population differentiation, loss of intermediate frequency alleles at microsatellite loci, and very low mtDNA haplotype diversity with all haplotypes being very closely related. Our study also revealed strong signals of population expansion. These results follow predictions from the leading‐edge model of expanding populations and supports conclusions from another study that climate change may allow this species to find suitable habitat within the U.S. border.  相似文献   
69.
Cells in glucose-limited Saccharomyces cerevisiae cultures differentiate into quiescent (Q) and nonquiescent (NQ) fractions before entering stationary phase. To understand this differentiation, Q and NQ cells from 101 deletion-mutant strains were tested for viability and reproductive capacity. Eleven mutants that affected one or both phenotypes in Q or NQ fractions were identified. NQ fractions exhibit a high level of petite colonies, and nine mutants affecting this phenotype were identified. Microarray analysis revealed >1300 mRNAs distinguished Q from NQ fractions. Q cell-specific mRNAs encode proteins involved in membrane maintenance, oxidative stress response, and signal transduction. NQ-cell mRNAs, consistent with apoptosis in these cells, encode proteins involved in Ty-element transposition and DNA recombination. More than 2000 protease-released mRNAs were identified only in Q cells, consistent with these cells being physiologically poised to respond to environmental changes. Our results indicate that Q and NQ cells differentiate significantly, with Q cells providing genomic stability and NQ cells providing nutrients to Q cells and a regular source of genetic diversity through mutation and transposition. These studies are relevant to chronological aging, cell cycle, and genome evolution, and they provide insight into complex responses that even simple organisms have to starvation.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号