首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   922篇
  免费   75篇
  2022年   6篇
  2021年   15篇
  2020年   8篇
  2019年   10篇
  2018年   13篇
  2017年   4篇
  2016年   14篇
  2015年   40篇
  2014年   31篇
  2013年   59篇
  2012年   44篇
  2011年   56篇
  2010年   27篇
  2009年   33篇
  2008年   42篇
  2007年   40篇
  2006年   36篇
  2005年   37篇
  2004年   36篇
  2003年   50篇
  2002年   25篇
  2001年   28篇
  2000年   34篇
  1999年   29篇
  1998年   10篇
  1997年   6篇
  1996年   9篇
  1995年   6篇
  1994年   8篇
  1992年   29篇
  1991年   11篇
  1990年   24篇
  1989年   17篇
  1988年   15篇
  1987年   17篇
  1986年   15篇
  1985年   12篇
  1984年   11篇
  1983年   6篇
  1982年   7篇
  1981年   5篇
  1980年   11篇
  1979年   6篇
  1978年   9篇
  1977年   5篇
  1976年   9篇
  1975年   3篇
  1974年   4篇
  1973年   7篇
  1972年   3篇
排序方式: 共有997条查询结果,搜索用时 15 毫秒
71.
Two truncated Bacillus thuringiensis -endotoxin genes, belonging to the classes cry1Ab and cry1B, and both coding for N-terminal toxic fragments of the corresponding crystal proteins, were translationally fused. Expression of the fusion gene driven by the cry1C promoter in Escherichia coli at a very high level resulted in a protein with enhanced toxicity to the diamondback moth (Plutella xylostella).  相似文献   
72.
An ideal HIV-1 Env immunogen is expected to mimic the native trimeric conformation for inducing broadly neutralizing antibody responses. The native conformation is dependent on efficient cleavage of HIV-1 Env. The clade B isolate, JRFL Env is efficiently cleaved when expressed on the cell surface. Here, for the first time, we report the identification of a native clade C Env, 4-2.J41 that is naturally and efficiently cleaved on the cell surface as confirmed by its biochemical and antigenic characteristics. In addition to binding to several conformation-dependent neutralizing antibodies, 4-2.J41 Env binds efficiently to the cleavage-dependent antibody PGT151; thus validating its native cleaved conformation. In contrast, 4-2.J41 Env occludes non-neutralizing epitopes. The cytoplasmic-tail of 4-2.J41 Env plays an important role in maintaining its conformation. Furthermore, codon optimization of 4-2.J41 Env sequence significantly increases its expression while retaining its native conformation. Since clade C of HIV-1 is the prevalent subtype, identification and characterization of this efficiently cleaved Env would provide a platform for rational immunogen design.  相似文献   
73.

Background

IP3-mediated calcium mobilization from intracellular stores activates and translocates PKC-α from cytosol to membrane fraction in response to STa in COLO-205 cell line. The present study was undertaken to determine the involvement of cytoskeleton proteins in translocation of PKC-α to membrane from cytosol in the Escherichiacoli STa-mediated signaling cascade in a human colonic carcinoma cell line COLO-205.

Methods

Western blots and consequent densitometric analysis were used to assess time-dependent redistribution of cytoskeletal proteins. This redistribution was further confirmed by using confocal microscopy. Pharmacological reagents were applied to colonic carcinoma cells to disrupt the microfilaments (cytochalasin D) and microtubules (nocodazole).

Results

STa treatment in COLO-205 cells showed dynamic redistribution and an increase in actin content in the Triton-insoluble fraction, which corresponds to an increase in polymerization within 1 min. Moreover, pharmacological disruption of actin-based cytoskeleton greatly disturbed PKC-α translocation to the membrane.

Conclusions

These results suggested that the organization of actin cytoskeleton is rapidly rearranged following E. coli STa treatment and the integrity of the actin cytoskeleton played a crucial role in PKC-α movement in colonic cells. Depolymerization of tubulin had no effect on the ability of the kinase to be translocated to the membrane.

General significance

In the present study, we have shown for the first time that in colonic carcinoma cells, STa-mediated rapid changes of actin cytoskeleton arrangement might be involved in the translocation of PKC-α to membrane.  相似文献   
74.
Adipose tissue inflammation in obesity is a major factor leading to cardiovascular disease and type 2 diabetes.12/15 lipoxygenases (ALOX) play an important role in the generation of inflammatory mediators, insulin resistance and downstream immune activation in animal models of obesity. However, the expression and roles of 12/15ALOX isoforms, and their cellular sources in human subcutaneous (sc) and omental (om) fat in obesity is unknown. The objective of this study was to examine the gene expression and localization of ALOX isoforms and relevant downstream cytokines in subcutaneous (sc) and omental (om) adipose tissue in obese humans. Paired biopsies of sc and om fat were obtained during bariatric surgeries from 24 morbidly obese patients. Gene and protein expression for ALOX15a, ALOX15b and ALOX 12 were measured by real-time PCR and western blotting in adipocytes and stromal vascular fractions (SVF) from om and sc adipose tissue along with the mRNA expression of the downstream cytokines IL-12a, IL-12b, IL-6, IFNγ and the chemokine CXCL10. In a paired analysis, all ALOX isoforms, IL-6, IL-12a and CXCL10 were significantly higher in om vs. sc fat. ALOX15a mRNA and protein expression was found exclusively in om fat. All of the ALOX isoforms were expressed solely in the SVF. Further fractionation of the SVF in CD34+ and CD34- cells indicated that ALOX15a is predominantly expressed in the CD34+ fraction including vascular and progenitor cells, while ALOX15B is mostly expressed in the CD34- cells containing various leucocytes and myeloid cells. This result was confirmed by immunohistochemistry showing exclusive localization of ALOX15a in the om fat and predominantly in the vasculature and non-adipocyte cells. Our finding is identifying selective expression of ALOX15a in human om but not sc fat. This is a study showing a major inflammatory gene exclusively expressed in visceral fat in humans.  相似文献   
75.
Magnesium translocation across cell membranes is essential for numerous physiological processes. Three recently reported crystal structures of the CorA magnesium transport system revealed a surprising architecture, with a bundle of giant α-helices forming a 60-Å-long pore that extends beyond the membrane before widening into a funnel-shaped cytosolic domain. The presence of divalent cations in putative intracellular regulation sites suggests that these structures correspond to the closed conformation of CorA. To examine the nature of the conduction pathway, we performed 110-ns molecular-dynamics simulations of two of these structures in a lipid bilayer with and without regulatory ions. The results show that a 15-Å-long hydrophobic constriction straddling the membrane-cytosol interface constitutes a steric bottleneck whose location coincides with an electrostatic barrier opposing cation translocation. In one of the simulations, structural relaxation after the removal of regulatory ions led to concerted changes in the tilt of the pore helices, resulting in iris-like dilation and spontaneous hydration of the hydrophobic neck. This simple and robust mechanism is consistent with the regulation of pore opening by intracellular magnesium concentration, and explains the unusual architecture of CorA.  相似文献   
76.
77.
Dysmetabolic state in diabetes may lead to augmented synthesis of extracellular matrix (ECM) proteins. In the endothelial cells, we have previously demonstrated that glucose-induced fibronectin (FN) production and that of its splice variant, EDB(+)FN, is regulated by protein kinase B (PKB, also known as Akt). In this study, we investigated the role of Akt1 in ECM protein production in the organs affected by chronic diabetic complications. We studied Akt1/PKBalpha knockout mice and wild-type control littermates. To avoid confounding effects of systemic insulin, we used 30% galactose feeding to induce hyperhexosemia for 8 wk starting at 6 wk of age. We investigated FN mRNA, EDB(+)FN mRNA, and transforming growth factor (TGF)-beta mRNA expression, Akt phosphorylation, Akt kinase activity, and NF-kappaB and AP-1 activation in the retina, heart, and kidney. Renal and cardiac tissues were histologically examined. Galactose feeding caused significant upregulation of FN, EDB(+)FN, and TGF-beta in all tissues. FN protein levels paralleled mRNA. Such upregulation were prevented in Akt1-deficient galactose-fed mice. Galactose feeding caused ECM protein deposition in the glomeruli and in the myocardium, which was prevented in the Akt knockout mice. NF-kappaB and AP-1 activation was pronounced in galactose-fed wild-type mice and prevented in the galactose-fed Akt1/PKBalpha-deficient group. In the retina and kidney, Ser473 was the predominant site for Akt phosphorylation, whereas in the heart it was Thr308. Parallel experiment in streptozotocin-induced diabetic animals showed similar results. The data from this study indicate that hyperhexosemia-induced Akt/PKB activation may be an important mechanism leading to NF-kappaB and AP-1 activation and increased ECM protein synthesis in the organs affected by chronic diabetic complications.  相似文献   
78.
Phospholipase A2 (PLA2) proteins affect cellular activation, signal transduction, and possibly innate immunity. A specific secretory PLA2, sPLA2-X, is shown here to neutralize human immunodeficiency virus type 1 (HIV-1) through degradation of the viral membrane. Catalytic function was required for antiviral activity, and the target cells of infection were unaffected. sPLA2-X potently reduced gene transfer of HIV-1 Env-pseudotyped lentivirus vectors and inhibited the replication of both CCR5- and CXCR4-tropic HIV-1 in human CD4+ T cells. Virions resistant to damage by antibody and complement were sensitive to lysis by sPLA2-X, suggesting a novel mechanism of antiviral surveillance independent of the acquired immune system.  相似文献   
79.
An important component of functional genomics involves the understanding of protein association. The interfaces resulting from protein-protein interactions - (i) specific, as represented by the homodimeric quaternary structures and the complexes formed by two independently occurring protein components, and (ii) non-specific, as observed in the crystal lattice of monomeric proteins - have been analysed on the basis of the length and the number of peptide segments. In 1000 A2 of the interface area, contributed by a polypeptide chain, there would be 3.4 segments in homodimers, 5.6 in complexes and 6.3 in crystal contacts. Concomitantly, the segments are the longest (with 8.7 interface residues) in homodimers. Core segments (likely to contribute more towards binding) are more in number in homodimers (1.7) than in crystal contacts (0.5), and this number can be used as one of the parameters to distinguish between the two types of interfaces. Dominant segments involved in specific interactions, along with their secondary structural features, are enumerated.  相似文献   
80.
The rapidly increasing volume of sequence and structure information available for proteins poses the daunting task of determining their functional importance. Computational methods can prove to be very useful in understanding and characterizing the biochemical and evolutionary information contained in this wealth of data, particularly at functionally important sites. Therefore, we perform a detailed survey of compositional and evolutionary constraints at the molecular and biological function level for a large set of known functionally important sites extracted from a wide range of protein families. We compare the degree of conservation across different functional categories and provide detailed statistical insight to decipher the varying evolutionary constraints at functionally important sites. The compositional and evolutionary information at functionally important sites has been compiled into a library of functional templates. We developed a module that predicts functionally important columns (FIC) of an alignment based on the detection of a significant "template match score" to a library template. Our template match score measures an alignment column's similarity to a library template and combines a term explicitly representing a column's residue composition with various evolutionary conservation scores (information content and position-specific scoring matrix-derived statistics). Our benchmarking studies show good sensitivity/specificity for the prediction of functional sites and high accuracy in attributing correct molecular function type to the predicted sites. This prediction method is based on information derived from homologous sequences and no structural information is required. Therefore, this method could be extremely useful for large-scale functional annotation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号