首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   8篇
  2023年   3篇
  2022年   5篇
  2021年   7篇
  2020年   7篇
  2019年   5篇
  2018年   5篇
  2017年   4篇
  2016年   6篇
  2015年   10篇
  2014年   9篇
  2013年   15篇
  2012年   13篇
  2011年   17篇
  2010年   6篇
  2009年   5篇
  2008年   10篇
  2007年   6篇
  2006年   9篇
  2005年   5篇
  2004年   9篇
  2003年   5篇
  2002年   4篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有177条查询结果,搜索用时 31 毫秒
61.
Eph receptors and ephrin ligands are membrane-bound cell–cell communication molecules with well-defined roles in development. However, their expression and functions in the gastric epithelium are virtually unknown. We detected several EphB receptors and ephrin-Bs in the gastric corpus mucosa of the adult rodent stomach by RT-PCR amplification. Immunostaining showed complementary expression patterns, with EphB receptors preferentially expressed in the deeper regions and ephrin-Bs in the superficial regions of the gastric units. EphB1, EphB2 and EphB3 are expressed in mucous neck, chief and parietal cells, respectively. In contrast, ephrin-B1 is in pit cells and proliferating cells of the isthmus. In a mouse ulcer model, EphB2 expression was upregulated in the regenerating epithelium and expanded into the isthmus. Thus, EphB/ephrin-B signaling likely occurs preferentially in the isthmus, where receptor-ligand overlap is highest. We show that EphB signaling in primary gastric epithelial cells promotes cell retraction and repulsion at least in part through RhoA activation. Based on these findings, we propose that the EphB-positive progeny of gastric stem cells migrates from the isthmus toward the bottom of the gastric glands due to repulsive signals arising from contact with ephrin-Bs, which are preferentially expressed in the more superficial regions of the isthmus and gastric pits.  相似文献   
62.
The replication of eukaryotic positive-strand RNA virus genomes occurs in the membrane-bound RNA replication complexes. Previously, we found that the extract of evacuolated tobacco BY-2 protoplasts (BYL) is capable of supporting the translation and subsequent replication of the genomic RNAs of plant positive-strand RNA viruses, including Tomato mosaic virus (ToMV). Here, to dissect the process that precedes the formation of ToMV RNA replication complexes, we prepared membrane-depleted BYL (mdBYL), in which the membranes were removed by centrifugation. In mdBYL, ToMV RNA was translated to produce the 130-kDa and 180-kDa replication proteins, but the synthesis of any ToMV-related RNAs did not occur. When BYL membranes were added back to the ToMV RNA-translated mdBYL after the termination of translation with puromycin, ToMV RNA was replicated. Using a replication-competent ToMV derivative that encodes the FLAG-tagged 180-kDa replication protein, it was shown by affinity purification that a complex that contained the 130-kDa and 180-kDa proteins and ToMV genomic RNA was formed after translation in mdBYL. When the complex was mixed with BYL membranes, ToMV RNA was replicated, which suggests that this ribonucleoprotein complex is an intermediate of ToMV RNA replication complex formation. We have named this ribonucleoprotein complex the "pre-membrane-targeting complex." Our data suggest that the formation of the pre-membrane-targeting complex is coupled with the translation of ToMV RNA, while posttranslationally added exogenous 180-kDa protein and replication templates can contribute to replication and can be replicated, respectively. Based on these results, we discuss the mechanisms of ToMV RNA replication complex formation.  相似文献   
63.
The exceptional versatility of calmodulin (CaM) three-dimensional arrangement is reflected in the growing number of structural models of CaM/protein complexes currently available in the Protein Data Bank (PDB) database, revealing a great diversity of conformations, domain organization, and structural responses to Ca2 +. Understanding CaM binding is complicated by the diversity of target proteins sequences. Data mining of the structures shows that one face of each of the eight CaM helices can contribute to binding, with little overall difference between the Ca2 + loaded N- and C-lobes and a clear prevalence of the C-lobe low Ca2 + conditions. The structures reveal a remarkable variety of configurations where CaM binds its targets in a preferred orientation that can be reversed and where CaM rotates upon Ca2 + binding, suggesting a highly dynamic metastable relation between CaM and its targets. Recent advances in structure–function studies and the discovery of CaM mutations being responsible for human diseases, besides expanding the role of CaM in human pathophysiology, are opening new exciting avenues for the understanding of the how CaM decodes Ca2 +-dependent and Ca2 +-independent signals.  相似文献   
64.
Neoseiulus womersleyi (Acari: Phytoseiidae) used to be the dominant species in fruit-tree orchards throughout Japan, but starting in the 1990s, N. womersleyi began to be displaced by Neoseiulus californicus in central and southwestern Japan. The present study was conducted to examine factors explaining the displacement of N. womersleyi by N. californicus. First, we confirmed under laboratory conditions that N. californicus could exclude N. womersleyi if they initially coexisted in a 1:1 ratio. During a 2-h continuous observation period, none of the heterospecific pairs had copulated and after 5 days together with heterospecific males, none of the females had laid eggs. When these females were placed with conspecific males, normal numbers of offspring were produced. Moreover, conspecific matings were not substantially disturbed in the presence of heterospecific males or females. Total fecundity was significantly lower in N. womersleyi than in N. californicus, but their r m values did not differ from each other. On the other hand, the frequency of intraguild predation by N. californicus on N. womersleyi was significantly higher than vice versa. From these results, we concluded that not reproductive interference nor differential female fecundity but asymmetrical intraguild predation seemed to explain the competitive exclusion of N. womersleyi by N. californicus.  相似文献   
65.
Kv7.2 (KCNQ2) is the principal molecular component of the slow voltage gated M-channel, which strongly influences neuronal excitability. Calmodulin (CaM) binds to two intracellular C-terminal segments of Kv7.2 channels, helices A and B, and it is required for exit from the endoplasmic reticulum. However, the molecular mechanisms by which CaM controls channel trafficking are currently unknown. Here we used two complementary approaches to explore the molecular events underlying the association between CaM and Kv7.2 and their regulation by Ca2+. First, we performed a fluorometric assay using dansylated calmodulin (D-CaM) to characterize the interaction of its individual lobes to the Kv7.2 CaM binding site (Q2AB). Second, we explored the association of Q2AB with CaM by NMR spectroscopy, using 15N-labeled CaM as a reporter. The combined data highlight the interdependency of the N- and C-lobes of CaM in the interaction with Q2AB, suggesting that when CaM binds Ca2+ the binding interface pivots between the N-lobe whose interactions are dominated by helix B and the C-lobe where the predominant interaction is with helix A. In addition, Ca2+ makes CaM binding to Q2AB more difficult and, reciprocally, the channel weakens the association of CaM with Ca2+.  相似文献   
66.
Bioactive N-acylethanolamines (NAEs), including N-palmitoylethanolamine, N-oleoylethanolamine, and N-arachidonoylethanolamine (anandamide), are formed from membrane glycerophospholipids in animal tissues. The pathway is initiated by N-acylation of phosphatidylethanolamine to form N-acylphosphatidylethanolamine (NAPE). Despite the physiological importance of this reaction, the enzyme responsible, N-acyltransferase, remains molecularly uncharacterized. We recently demonstrated that all five members of the HRAS-like suppressor tumor family are phospholipid-metabolizing enzymes with N-acyltransferase activity and are renamed HRASLS1-5 as phospholipase A/acyltransferase (PLA/AT)-1-5. However, it was poorly understood whether these proteins were involved in the formation of NAPE in living cells. In the present studies, we first show that COS-7 cells transiently expressing recombinant PLA/AT-1, -2, -4, or -5, and HEK293 cells stably expressing PLA/AT-2 generated significant amounts of [(14)C]NAPE and [(14)C]NAE when cells were metabolically labeled with [(14)C]ethanolamine. Second, as analyzed by liquid chromatography-tandem mass spectrometry, the stable expression of PLA/AT-2 in cells remarkably increased endogenous levels of NAPEs and NAEs with various N-acyl species. Third, when NAPE-hydrolyzing phospholipase D was additionally expressed in PLA/AT-2-expressing cells, accumulating NAPE was efficiently converted to NAE. We also found that PLA/AT-2 was partly responsible for NAPE formation in HeLa cells that endogenously express PLA/AT-2. These results suggest that PLA/AT family proteins may produce NAPEs serving as precursors of bioactive NAEs in vivo.  相似文献   
67.
The dinoflagellate Lepidodinium chlorophorum possesses "green" plastids containing chlorophylls a and b (Chl a+b), unlike most dinoflagellate plastids with Chl a+c plus a carotenoid peridinin (peridinin-containing plastids). In the present study we determined 8 plastid-encoded genes from Lepidodinium to investigate the origin of the Chl a+b-containing dinoflagellate plastids. The plastid-encoded gene phylogeny clearly showed that Lepidodinium plastids were derived from a member of Chlorophyta, consistent with pigment composition. We also isolated three different glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes from Lepidodinium-one encoding the putative cytosolic "GapC" enzyme and the remaining two showing affinities to the "plastid-targeted GapC" genes. In a GAPDH phylogeny, one of the plastid-targeted GapC-like sequences robustly grouped with those of dinoflagellates bearing peridinin-containing plastids, while the other was nested in a clade of the homologues of haptophytes and dinoflagellate genera Karenia and Karlodinium bearing "haptophyte-derived" plastids. Since neither host nor plastid phylogeny suggested an evolutionary connection between Lepidodinium and Karenia/Karlodinium, a lateral transfer of a plastid-targeted GapC gene most likely took place from a haptophyte or a dinoflagellate with haptophyte-derived plastids to Lepidodinium. The plastid-targeted GapC data can be considered as an evidence for the single origin of plastids in haptophytes, cryptophytes, stramenopiles, and alveolates. However, in the light of Lepidodinium GAPDH data, we need to closely examine whether the monophyly of the plastids in the above lineages inferred from plastid-targeted GapC genes truly reflects that of the host lineages.  相似文献   
68.
The seasonal variability of specific growth rate and the carbon stable isotope ratio (δ13C) of leaf blades (δ13Cleaf) of a temperate seagrass, Zostera marina (within 10 days old) were measured simultaneously, together with the δ13C of dissolved inorganic carbon (δ13CDIC) at three sites in the semi-closed Akkeshi estuary system, northeastern Japan, in June, September, and November 2004. The δ13Cleaf ranged from −16.2 to −6.3‰ and decreased from summer to winter. The simultaneous measurement of the δ13Cleaf, growth rate, and morphological parameters (mean leaf length and width, mean number of leaves per shoot, and sheath length) of the seagrass and δ13CDIC in the surrounding water allowed us to compare directly the δ13Cleaf and specific growth rate of seagrass. The difference in the δ13C of seagrass leaves relative to the source DIC (Δδ13Cleaf − DIC) was the least negative (−11 to −7‰) in June at all three sites and became more negative (−17 to −8‰) as the specific growth rate decreased. This positive correlation between Δδ13Cleaf − DIC and specific growth rate can be used to diagnose the growth of seagrasses. Δδ13Cleaf − DIC changed by −1.7 ± 0.2‰ when the leaf specific growth rate decreased by 1% d−1.  相似文献   
69.
Comparisons were made between succinate dehydrogenases (EC 1.3.99.1 [EC] )from 1-day-old and 5-day-old pea cotyledons. The enzyme wasloosely bound to the mitochondrial inner membrane in 5-day-oldcotyledons, but tightly in 1-day-old cotyledons. In addition,the enzyme partially purified from 5-day-old cotyledons wasmuch more labile than that from 1-day-old cotyledons. Succinaterapidly inactivated partially purified succinate dehydrogenasefrom 1-day-old cotyledons, but not from 5-day-old cotyledons.Dithiothreitol caused a change in the charge of the enzyme proteinfrom either 1- or 5-day-old cotyledons, only when succinatewas present. The enzyme from 5-day-old cotyledons differed fromthe succinate-induced labile form of the enzyme from 1-day-oldcotyledons in electrophoretic properties on a polyacrylamidegel. There was also a difference in the pattern of polyacrylamidegel electrophoresis between succinate dehydrogenases partiallypurified from 1- and 5-day-old cotyleodns. The partially purifiedenzyme from either 1- or 5-day-old cotyledons in the presenceof succinate had a molecular weight of 92,000. The molecularweight of the large subunit was suggested to be 65,000. Thepartially purified enzyme prepared from 1-day-old cotyledonsin the absence of succinate was in a form with a molecular weightof 113,000. (Received August 29, 1980; Accepted December 3, 1980)  相似文献   
70.
The present study aimed to evaluate the development of pulmonary hypertension by serial echocardiography, including measurements of pulmonary artery (PA) flow velocities, and correlate echocardiographic indices with pathological findings in rats administered monocrotaline (MCT). MCT (60 mg/kg body weight) or physiologic saline was administered to a total of 9 male Wistar rats at the age of 4 weeks (MCT group: n = 4, control group: n = 5, respectively). Echocardiography was performed serially until the age of 8 weeks. The ratio of right ventricular (RV) outflow tract dimensions to aortic dimensions increased progressively in the MCT group and became significantly greater than that of the control group after the age of 6 weeks. Peak PA velocity (Peak V) in the MCT group was significantly less than that of the control group at the ages of 7 and 8 weeks. The ratio of acceleration time to ejection time (AT/ET) in PA flow waveforms declined progressively and was significantly less than that of the control group after the age of 6 weeks. The ratio of RV weight to body weight (RVW/BW) in the MCT group was significantly greater than that of the control group. Both AT/ET ratio and Peak V were significantly inversely correlated with RVW/BW ratio. Furthermore, these echocardiographic findings were also significantly inversely correlated with the mean cross-sectional RV myocyte area. In conclusion, the progressive development of pulmonary hypertension leading to RV hypertrophy can be evaluated appropriately by echocardiography including PA flow Doppler indices in rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号