首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2337篇
  免费   184篇
  国内免费   2篇
  2022年   7篇
  2021年   31篇
  2020年   14篇
  2019年   23篇
  2018年   28篇
  2017年   25篇
  2016年   63篇
  2015年   105篇
  2014年   88篇
  2013年   127篇
  2012年   154篇
  2011年   152篇
  2010年   115篇
  2009年   77篇
  2008年   145篇
  2007年   140篇
  2006年   112篇
  2005年   111篇
  2004年   127篇
  2003年   130篇
  2002年   125篇
  2001年   24篇
  2000年   23篇
  1999年   30篇
  1998年   46篇
  1997年   31篇
  1996年   29篇
  1995年   28篇
  1994年   31篇
  1993年   30篇
  1992年   31篇
  1991年   31篇
  1990年   20篇
  1989年   24篇
  1988年   25篇
  1987年   15篇
  1986年   15篇
  1985年   13篇
  1984年   19篇
  1983年   12篇
  1982年   13篇
  1981年   18篇
  1980年   15篇
  1979年   13篇
  1978年   14篇
  1977年   11篇
  1976年   16篇
  1975年   7篇
  1974年   11篇
  1972年   7篇
排序方式: 共有2523条查询结果,搜索用时 109 毫秒
101.
The cytokine Sp?tzle is the ligand for Drosophila Toll, the prototype of an important family of membrane receptors that function in embryonic patterning and innate immunity. A dimeric precursor of Sp?tzle is processed by an endoprotease to produce a form (C-106) that cross-links Toll receptor ectodomains and establishes signaling. Here we show that before processing the pro-domain of Sp?tzle is required for correct biosynthesis and secretion. We mapped two loss-of-function mutations of Sp?tzle to a discrete site in the pro-domain and showed that the phenotype arises because of a defect in biosynthesis rather than signaling. We also report that the pro-domain and C-106 remain associated after cleavage and that this processed complex signals with the same characteristics as the C-terminal fragment. These results suggest that before activation the determinants on C-106 that bind specifically to Toll are sequestered by the pro-domain and that proteolytic processing causes conformational rearrangements that expose these determinants and enables binding to Toll. Furthermore, we show that the pro-domain is released when the Toll extracellular domain binds to the complex, a finding that has implications for the generation of a signaling-competent Toll dimer.  相似文献   
102.
Germination of Bacillus anthracis spores into the vegetative form is an essential step in anthrax pathogenicity. This process can be triggered in vitro by the common germinants inosine and alanine. Kinetic analysis of B. anthracis spore germination revealed synergy and a sequential mechanism between inosine and alanine binding to their cognate receptors. Because inosine is a critical germinant in vitro, we screened inosine analogs for the ability to block in vitro germination of B. anthracis spores. Seven analogs efficiently blocked this process in vitro. This led to the identification of 6-thioguanosine, which also efficiently blocked spore germination in macrophages and prevented killing of these cells mediated by B. anthracis spores. 6-Thioguanosine shows potential as an anti-anthrax therapeutic agent.  相似文献   
103.
104.
Endogenous phosphotyrosine signaling in zebrafish embryos   总被引:1,自引:0,他引:1  
In the developing embryo, cell growth, differentiation, and migration are strictly regulated by complex signaling pathways. One of the most important cell signaling mechanisms is protein phosphorylation on tyrosine residues, which is tightly controlled by protein-tyrosine kinases and protein-tyrosine phosphatases. Here we investigated endogenous phosphotyrosine signaling in developing zebrafish embryos. Tyrosine phosphorylated proteins were immunoaffinity-purified from zebrafish embryos at 3 and 5 days postfertilization and identified by multidimensional LC-MS. Among the identified proteins were tyrosine kinases, including Src family kinases, Eph receptor kinases, and focal adhesion kinases, as well as the adaptor proteins paxillin, p130Cas, and Crk. We identified several known and some unknown in vivo tyrosine phosphorylation sites in these proteins. Whereas most immunoaffinity-purified proteins were detected at both developmental stages, significant differences in abundance and/or phosphorylation state were also observed. In addition, multiplex in vitro kinase assays were performed by incubating a microarray of peptide substrates with the lysates of the two developmental stages. Many of the in vivo observations were confirmed by this on-chip in vitro kinase assay. Our experiments are the first to show that global tyrosine phosphorylation-mediated signaling can be studied at endogenous levels in complex multicellular organisms.  相似文献   
105.
Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis   总被引:3,自引:0,他引:3  
Perception of general elicitors by plant cells initiates signal transduction cascades that are regulated by protein phosphorylation. The earliest signaling events occur within minutes and include ion fluxes across the plasma membrane, activation of MAPKs, and the formation of reactive oxygen species. The phosphorylation events that regulate these signaling cascades are largely unknown. Here we present a mass spectrometry-based quantitative phosphoproteomics approach that identified differentially phosphorylated sites in signaling and response proteins from Arabidopsis cells treated with either flg22 or xylanase. Our approach was sensitive enough to quantitate phosphorylation on low abundance signaling proteins such as calcium-dependent protein kinases and receptor-like kinase family members. With this approach we identified one or more differentially phosphorylated sites in 76 membrane-associated proteins including a number of defense-related proteins. Our data on phosphorylation indicate a high degree of complexity at the level of post-translational modification as exemplified by the complex modification patterns of respiratory burst oxidase protein D. Furthermore the data also suggest that protein translocation and vesicle traffic are important aspects of early signaling and defense in response to general elicitors. Our study presents the largest quantitative Arabidopsis phosphoproteomics data set to date and provides a new resource that can be used to gain novel insight into plant defense signal transduction and early defense response.  相似文献   
106.
We have previously shown that complexes of Polybrene (PB), chondroitin sulfate C (CSC), and retrovirus transduce cells more efficiently than uncomplexed virus because the complexes are large and sediment, reaching the cells more rapidly than by diffusion. Transduction reaches a peak at equal weight concentrations of CSC and PB and declines when the dose of PB is higher or lower than CSC. We hypothesized that the nonlinear dose response of transduction was a complex function of the molecular characteristics of the polymers, cell viability, and the number of viruses incorporated into the complexes. To test this hypothesis, we formed complexes using an amphotropic retrovirus and several pairs of oppositely charged polymers and used them to transduce murine fibroblasts. We examined the effect of the type and concentration of polymers used on cell viability, the size and charge of the complexes, the number of viruses incorporated into the complexes, and virus binding and transduction. Transduction was enhanced (2.5- to 5.5-fold) regardless of which polymers were used and was maximized when the number of positive charge groups was in slight excess (15-28%) of the number of negative charge groups. Higher doses of cationic polymer were cytotoxic, whereas complexes formed with lower doses were smaller, contained fewer viruses, and sedimented more slowly. These results show that the dose response of transduction by virus-polymer complexes is nonlinear because excess cationic polymer is cytotoxic, whereas excess anionic polymer reduces the number of active viruses that are delivered to the cells.  相似文献   
107.
The Vfm quorum sensing (QS) system is preponderant for the virulence of different species of the bacterial genus Dickeya. The vfm gene cluster encodes 26 genes involved in the production, sensing or transduction of the QS signal. To date, the Vfm QS signal has escaped detection by analytical chemistry methods. However, we report here a strain-specific polymorphism in the biosynthesis genes vfmO and vfmP, which is predicted to be related to the production of different analogues of the QS signal. Consequently, the Vfm communication could be impossible between strains possessing different variants of the genes vfmO/P. We constructed three Vfm QS biosensor strains possessing different vfmO/P variants and compared these biosensors for their responses to samples prepared from 34 Dickeya strains possessing different vfmO/P variants. A pattern of specificity was demonstrated, providing evidence that the polymorphism in the genes vfmO/P determines the biosynthesis of different analogues of the QS signal. Unexpectedly, this vfmO/P-dependent pattern of specificity is linked to a polymorphism in the ABC transporter gene vfmG, suggesting an adaptation of the putative permease VfmG to specifically bind different analogues of the QS signal. Accordingly, we discuss the possible involvement of VfmG as co-sensor of the Vfm two-component regulatory system.  相似文献   
108.
The structure of a new bisindole alkaloid, 12′-hydroxyisostrychnobiline, has been proposed from the analysis of its 300 MHz 1H NMR spectrum and comparison of the spectroscopic data with those of various monomeric and dimeric alkaloids, previously isolated from the same Strychnos species  相似文献   
109.
110.
Circadian activity rhythms of most Siberian hamsters (Phodopus sungorus sungorus) fail to reentrain to a 5-h phase shift of the light-dark (LD) cycle. Instead, their rhythms free-run at periods close to 25 h despite the continued presence of the LD cycle. This lack of behavioral reentrainment necessarily means that molecular oscillators in the master circadian pacemaker, the SCN, were unable to reentrain as well. The authors tested the hypothesis that a phase shift of the LD cycle rendered the SCN incapable of responding to photic input. Animals were exposed to a 5-h phase delay of the photocycle, and activity rhythms were monitored until a lack of reentrainment was confirmed. Hamsters were then housed in constant darkness for 24 h and administered a 30-min light pulse 2 circadian hours after activity onset. Brains were then removed, and tissue sections containing the SCN were processed for in situ hybridization. Sections were probed with Siberian hamster c-fos and per1 mRNA probes because light rapidly induces these 2 genes in the SCN during subjective night but not at other circadian phases. Light pulses induced robust expression of both genes in all animals that reentrained to the LD cycle, but no expression was observed in any animal that failed to reentrain. None of the animals exhibited an intermediate response. This finding is the first report of acute shift in a photocycle eliminating photosensitivity in the SCN and suggests that a specific pattern of light exposure may desensitize the SCN to subsequent photic input.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号