首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells are highly responsive to their environment. One of the main strategies used by cells in signal transduction is protein phosphorylation, a reversible modification that regulates numerous biological processes. Misregulation of phosphorylation-mediated processes is often implicated in many human diseases and cancers. A global and quantitative analysis of protein phosphorylation provides a powerful new approach and has the potential to reveal new insights in signaling pathways. Recent technological advances in high resolution mass spectrometers and multidimensional liquid chromatography, combined with the use of stable isotope labeling of proteins, have led to the application of quantitative phosphoproteomics to study in vivo signal transduction events on a proteome-wide scale. Here we review recent advancements in quantitative phosphoproteomic technologies, discuss their potentials, and identify areas for future development. A key objective of proteomic technology is its application to addressing biological questions. We will therefore describe how current quantitative phosphoproteomic technology can be used to study the molecular basis of phosphorylation events in the DNA damage response.  相似文献   

2.
Cells are highly responsive to their environment. One of the main strategies used by cells in signal transduction is protein phosphorylation, a reversible modification that regulates numerous biological processes. Misregulation of phosphorylation-mediated processes is often implicated in many human diseases and cancers. A global and quantitative analysis of protein phosphorylation provides a powerful new approach and has the potential to reveal new insights in signaling pathways. Recent technological advances in high resolution mass spectrometers and multidimensional liquid chromatography, combined with the use of stable isotope labeling of proteins, have led to the application of quantitative phosphoproteomics to study in vivo signal transduction events on a proteome-wide scale. Here we review recent advancements in quantitative phosphoproteomic technologies, discuss their potentials and identify areas for future development. A key objective of proteomic technology is its application to addressing biological questions. We will therefore describe how current quantitative phosphoproteomic technology can be used to study the molecular basis of phosphorylation events in the DNA damage response.Key words: proteomics, mass spectrometry, DNA damage response, phosphorylation, HILIC, SILAC  相似文献   

3.
Invasion of host cells by pathogenic or mutualistic microbes requires complex molecular dialogues that often determine host survival. Although several components of the underlying signaling cascades have recently been identified and characterized, our understanding of proteins that facilitate signal transduction or assemble signaling complexes is rather sparse. Our knowledge of plant-specific remorin proteins, annotated as proteins with unknown function, has recently advanced with respect to their involvement in host-microbe interactions. Current data demonstrating that a remorin protein restricts viral movement in tomato leaves and the importance of a symbiosis-specific remorin for bacterial infection of root nodules suggest that these proteins may serve such regulatory functions. Direct interactions of other remorins with a resistance protein in Arabidopsis thaliana, and differential phosphorylation upon perception of microbial-associated molecular patterns and during expression of bacterial effector proteins, strongly underline their roles in plant defense. Furthermore, the specific subcellular localization of remorins in plasma membrane microdomains now provides the opportunity to visualize membrane rafts in living plants cells. There, remorins may oligomerize and act as scaffold proteins during early signaling events. This review summarizes current knowledge of this protein family and the potential roles of remorins in membrane rafts.  相似文献   

4.
Protein phosphorylation events are key regulators of cellular signaling processes. In the era of functional genomics, rational drug design programs demand large-scale high-throughput analysis of signal transduction cascades. Significant improvements in the area of mass spectrometry-based proteomics have provided exciting opportunities for rapid progress toward global protein phosphorylation analysis. This review summarizes several recent advances made in the field of phosphoproteomics with an emphasis placed on mass spectrometry instrumentation, enrichment methods and quantification strategies. In the near future, these technologies will provide a tool that can be used for quantitative investigation of signal transduction pathways to generate new insights into biologic systems.  相似文献   

5.
Protein phosphorylation plays a pivotal role in the regulation of many cellular events; increasing evidences indicate that this post-translational modification is involved in plant response to various abiotic and biotic stresses. Since phosphorylated proteins may be present at low abundance, enrichment methods are generally required for their analysis. We here describe the quantitative changes of phosphoproteins present in Arabidopsis thaliana leaves after challenging with elicitors or treatments mimicking biotic stresses, which stimulate basal resistance responses, or oxidative stress. Phosphoproteins from elicited and control plants were enriched by means of metal oxide affinity chromatography and resolved by 2D electrophoresis. A comparison of the resulting proteomic maps highlighted phosphoproteins showing quantitative variations induced by elicitor treatment; these components were identified by MALDI-TOF peptide mass fingerprinting and/or nanoLC-ESI-LIT-MS/MS experiments. In total, 97 differential spots, representing 75 unique candidate phosphoproteins, were characterized. They are representative of different protein functional groups, such as energy and carbon metabolism, response to oxidative and abiotic stresses, defense, protein synthesis, RNA processing and cell signaling. Ascertained protein phosphorylation found a positive confirmation in available Arabidopsis phosphoproteome database. The role of each identified phosphoprotein is here discussed in relation to plant defense mechanisms. Our results suggest a partial overlapping of the responses to different treatments, as well as a communication with key cellular functions by imposed stresses.  相似文献   

6.
Protein phosphorylation events are key regulators of cellular signaling processes. In the era of functional genomics, rational drug design programs demand large-scale high-throughput analysis of signal transduction cascades. Significant improvements in the area of mass spectrometry-based proteomics have provided exciting opportunities for rapid progress toward global protein phosphorylation analysis. This review summarizes several recent advances made in the field of phosphoproteomics with an emphasis placed on mass spectrometry instrumentation, enrichment methods and quantification strategies. In the near future, these technologies will provide a tool that can be used for quantitative investigation of signal transduction pathways to generate new insights into biologic systems.  相似文献   

7.
Cardiac hypertrophic signaling cascades resulting in heart failure diseases are mediated by protein phosphorylation. Recent developments in mass spectrometry-based phosphoproteomics have led to the identification of thousands of differentially phosphorylated proteins and their phosphorylation sites. However, functional studies of these differentially phosphorylated proteins have not been conducted in a large-scale or high-throughput manner due to a lack of methods capable of revealing the functional relevance of each phosphorylation site. In this study, an integrated approach combining quantitative phosphoproteomics and cell-based functional screening using phosphorylation competition peptides was developed. A pathological cardiac hypertrophy model, junctate-1 transgenic mice and control mice, were analyzed using label-free quantitative phosphoproteomics to identify differentially phosphorylated proteins and sites. A cell-based functional assay system measuring hypertrophic cell growth of neonatal rat ventricle cardiomyocytes (NRVMs) following phenylephrine treatment was applied, and changes in phosphorylation of individual differentially phosphorylated sites were induced by incorporation of phosphorylation competition peptides conjugated with cell-penetrating peptides. Cell-based functional screening against 18 selected phosphorylation sites identified three phosphorylation sites (Ser-98, Ser-179 of Ldb3, and Ser-1146 of palladin) displaying near-complete inhibition of cardiac hypertrophic growth of NRVMs. Changes in phosphorylation levels of Ser-98 and Ser-179 in Ldb3 were further confirmed in NRVMs and other pathological/physiological hypertrophy models, including transverse aortic constriction and swimming models, using site-specific phospho-antibodies. Our integrated approach can be used to identify functionally important phosphorylation sites among differentially phosphorylated sites, and unlike conventional approaches, it is easily applicable for large-scale and/or high-throughput analyses.  相似文献   

8.
MAP kinase (MAPK) signal transduction cascades are conserved eukaryotic pathways that modulate stress responses and developmental processes. In a recent report we have identified novel Arabidopsis MAPKK/MAPK/Substrate signaling pathways using microarrays containing 2,158 unique Arabidopsis proteins. Subsequently, several WRKY and TGA targets phosphorylated by MAPKs were verified in planta. We have also reported that specific MAPKK/MAPK modules expressed in Nicotiana benthamiana induced a cell death phenotype related to the immune response. We have generated a MAPK phosphorylation network based on our protein microarray experimental data. Here we further analyze our network by integrating phosphorylation and gene expression information to identify biologically relevant signaling modules. We have identified 108 phosphorylation events that occur among 96 annotated genes with highly similar pairwise expression profiles. Our analysis brings a new perspective on MAPK signaling by revealing new relationships between components of signaling pathways.Key words: MAPK, protein microarray, network, cell death, co-expression, signaling  相似文献   

9.
Advances in proteomic techniques have allowed the large-scale identification of phosphorylation sites in complex protein samples, but new biological insight requires an understanding of their in vivo dynamics. Here, we demonstrate the use of a stable isotope-based quantitative approach for pathway discovery and structure-function studies in Arabidopsis cells treated with the bacterial elicitor flagellin. The quantitative comparison identifies individual sites on plasma membrane (PM) proteins that undergo rapid phosphorylation or dephosphorylation. The data reveal both divergent dynamics of different sites within one protein and coordinated regulation of homologous sites in related proteins, as found for the PM H(+)-ATPases AHA1, 2 and 3. Strongly elicitor-responsive phosphorylation sites may reflect direct regulation of protein activity. We confirm this prediction for RbohD, an NADPH oxidase that mediates the rapid production of reactive oxygen species (ROS) in response to elicitors and pathogens. Plant NADPH oxidases are structurally distinct from their mammalian homologues, and regulation of the plant enzymes is poorly understood. On RbohD, we found both unchanging and strongly induced phosphorylation sites. By complementing an RbohD mutant plant with non-phosphorylatable forms of RbohD, we show that only those sites that undergo differential regulation are required for activation of the protein. These experiments demonstrate the potential for use of quantitative phosphoproteomics to determine regulatory mechanisms at the molecular level and provide new insights into innate immune responses.  相似文献   

10.
11.
Early signaling events induced by elicitors of plant defenses   总被引:1,自引:0,他引:1  
Plant pathogen attacks are perceived through pathogen-issued compounds or plant-derived molecules that elicit defense reactions. Despite the large variety of elicitors, general schemes for cellular elicitor signaling leading to plant resistance can be drawn. In this article, we review early signaling events that happen after elicitor perception, including reversible protein phosphorylations, changes in the activities of plasma membrane proteins, variations in free calcium concentrations in cytosol and nucleus, and production of nitric oxide and active oxygen species. These events occur within the first minutes to a few hours after elicitor perception. One specific elicitor transduction pathway can use a combination or a partial combination of such events which can differ in kinetics and intensity depending on the stimulus. The links between the signaling events allow amplification of the signal transduction and ensure specificity to get appropriate plant defense reactions. This review first describes the early events induced by cryptogein, an elicitor of tobacco defense reactions, in order to give a general scheme for signal transduction that will be use as a thread to review signaling events monitored in different elicitor or plant models.  相似文献   

12.
13.
Protein phosphorylation-dephosphorylation events play a primary role in regulation of almost all aspects of cell function including signal transduction, cell cycle, or apoptosis. Thus far, T cell phosphoproteomics have focused on analysis of phosphotyrosine residues, and little is known about the role of serine/threonine phosphorylation in early activation of the T cell receptor (TCR). Therefore, we performed a quantitative mass spectrometry-based analysis of the global phosphoproteome of human primary T cells in response to 5 min of TCR activation with anti-CD3 antibody. Combining immunoprecipitation with an antiphosphotyrosine antibody, titanium dioxide phosphopeptide enrichment, isobaric tag for the relative and absolute quantitation methodology, and strong cation exchange separation, we were able to identify 2814 phosphopeptides. These unique sites were employed to investigate the site-specific phosphorylation dynamics. Five hundred and seventeen phosphorylation sites showed TCR-responsive changes. We found that upon 5 min of stimulation of the TCR, specific serine and threonine kinase motifs are overrepresented in the set of responsive phosphorylation sites. These phosphorylation events targeted proteins with many different activities and are present in different subcellular locations. Many of these proteins are involved in intracellular signaling cascades related mainly to cytoskeletal reorganization and regulation of small GTPase-mediated signal transduction, probably involved in the formation of the immune synapse.  相似文献   

14.
Reversible protein phosphorylation is a central cellular regulatory mechanism in modulating protein activity and propagating signals within cellular pathways and networks. Development of more effective methods for the simultaneous identification of phosphorylation sites and quantification of temporal changes in protein phosphorylation could provide important insights into molecular signaling mechanisms in various cellular processes. Here we present an integrated quantitative phosphoproteomics approach and its application for comparative analysis of Cos-7 cells in response to lysophosphatidic acid (LPA) gradient stimulation. The approach combines trypsin-catalyzed (16)O/ (18)O labeling plus (16)O/ (18)O-methanol esterification for quantitation, a macro-immobilized metal-ion affinity chromatography trap for phosphopeptide enrichment, and LC-MS/MS analysis. LC separation and MS/MS are followed by neutral loss-dependent MS/MS/MS for phosphopeptide identification using a linear ion trap (LTQ)-FT mass spectrometer. A variety of phosphorylated proteins were identified and quantified including receptors, kinases, proteins associated with small GTPases, and cytoskeleton proteins. A number of hypothetical proteins were also identified as differentially expressed followed by LPA stimulation, and we have shown evidence of pseudopodia subcellular localization of one of these candidate proteins. These results demonstrate the efficiency of this quantitative phosphoproteomics approach and its application for rapid discovery of phosphorylation events associated with LPA gradient sensing and cell chemotaxis.  相似文献   

15.
16.
Reversible protein phosphorylation is involved in the regulation of most, if not all, major cellular processes via dynamic signal transduction pathways. During the last decade quantitative phosphoproteomics have evolved from a highly specialized area to a powerful and versatile platform for analyzing protein phosphorylation at a system-wide scale and has become the intuitive strategy for comprehensive characterization of signaling networks. Contemporary phosphoproteomics use highly optimized procedures for sample preparation, mass spectrometry and data analysis algorithms to identify and quantify thousands of phosphorylations, thus providing extensive overviews of the cellular signaling networks. As a result of these developments quantitative phosphoproteomics have been applied to study processes as diverse as immunology, stem cell biology and DNA damage. Here we review the developments in phosphoproteomics technology that have facilitated the application of phosphoproteomics to signaling networks and introduce examples of recent system-wide applications of quantitative phosphoproteomics. Despite the great advances in phosphoproteomics technology there are still several outstanding issues and we provide here our outlook on the current limitations and challenges in the field.  相似文献   

17.
Mithoe SC  Menke FL 《Phytochemistry》2011,72(10):997-1006
Plants and animal cells use intricate signaling pathways to respond to a diverse array of stimuli. These stimuli include signals from environment, such as biotic and abiotic stress signals, as well as cell-to-cell signaling required for pattern formation during development. The transduction of the signal often relies on the post-translational modification (PTM) of proteins. Protein phosphorylation in eukaryotic cells is considered to be a central mechanism for regulation and cellular signaling. The classic view is that phosphorylation of serine (Ser) and threonine (Thr) residues is more abundant, whereas tyrosine (Tyr) phosphorylation is less frequent. This review provides an overview of the progress in the plant phosphoproteomics field and how this progress has lead to a re-evaluation of the relative contribution of tyrosine phosphorylation to the plant phosphoproteome. In relation to this appreciated contribution of tyrosine phosphorylation we also discuss some of the recent progress on the role of tyrosine phosphorylation in plant signal transduction.  相似文献   

18.
19.
To understand the cross-talk and specificity of the early responses of plants to salt and drought, we performed physiological and proteome analyses of Brassica napus seedlings pretreated with 245 mM NaCl or 25% polyethylene glycol (PEG) 6000 under identical osmotic pressure (-1.0 MPa). Significant decreases in water content and photosynthetic rate and excessive accumulation of compatible osmolytes and oxidative damage were observed in response to both stresses. Unexpectedly, the drought response was more severe than the salt response. We further identified 45 common differentially expressed proteins (DEPs), 143 salt-specific DEPs and 160 drought-specific DEPs by isobaric tags for relative and absolute quantitation (iTRAQ) analysis. The proteome quantitative data were then confirmed by multiple reaction monitoring (MRM). The differences in the proteomic profiles between drought-treated and salt-treated seedlings exceeded the similarities in the early stress responses. Signal perception and transduction, transport and membrane trafficking, and photosynthesis-related proteins were enriched as part of the molecular cross-talk and specificity mechanism in the early responses to the two abiotic stresses. The Ca2+ signaling, G protein-related signaling, 14-3-3 signaling pathway and phosphorylation cascades were the common signal transduction pathways shared by both salt and drought stress responses; however, the proteins with executive functions varied. These results indicate functional specialization of family proteins in response to different stresses, i.e., CDPK21, TPR, and CTR1 specific to phosphorylation cascades under early salt stress, whereas STN7 and BSL were specific to phosphorylation cascades under early drought stress. Only the calcium-binding EF-hand family protein and ZKT were clearly identified as signaling proteins that acted as cross-talk nodes for salt and drought signaling pathways. Our study provides new clues and insights for developing strategies to improve the tolerance of crops to complex, multiple environmental stresses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号