首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   413篇
  免费   15篇
  2022年   2篇
  2021年   9篇
  2020年   6篇
  2019年   6篇
  2018年   13篇
  2017年   6篇
  2016年   10篇
  2015年   6篇
  2014年   9篇
  2013年   19篇
  2012年   33篇
  2011年   44篇
  2010年   51篇
  2009年   21篇
  2008年   24篇
  2007年   13篇
  2006年   20篇
  2005年   13篇
  2004年   12篇
  2003年   16篇
  2002年   12篇
  2001年   11篇
  2000年   13篇
  1999年   2篇
  1998年   9篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1980年   1篇
  1978年   1篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1973年   1篇
  1971年   2篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1966年   2篇
  1965年   2篇
  1961年   1篇
排序方式: 共有428条查询结果,搜索用时 156 毫秒
141.
Inhibition of the novel oligopeptidase B from Serratia proteamaculans (PSP) by basic pancreatic trypsin inhibitor, Zn2+ ions, and o- and m-phenanthroline was investigated. A pronounced effect of calcium ions on the interaction of PSP with inhibitors was demonstrated. Inversion voltamperometry and atomic absorption spectrometry revealed no zinc ions in the PSP molecule. Hydrophobic nature of the enzyme inhibition by o- and m-phenanthroline was established.  相似文献   
142.
143.
144.
Nep1-like proteins (NLPs) are a novel family of microbial elicitors of plant necrosis that induce a hypersensitive-like response in dicot plants. The spatial structure and role of these proteins are yet unknown. In a paper published in BMC Plant Biology (2008; 8:50) we have proposed that the core region of Nep1-like proteins (NLPs) belong to the Cupin superfamily. Based on what is known about the Cupin superfamily, in this addendum to the paper we discuss how NLPs could form oligomers.Key words: quaternary structure, necrosis and ethylene inducing proteins, NLPs, MpNEP1, MpNEP2, NPP1, Moniliophthora perniciosa, Phytophthora parasiticaCupins may be organized as monomers, dimers, hexamers and octamers of β-barrel domains.1 To the best of our knowledge trimers have not been detected yet. The interaction of two monomers building up a dimeric structure is basically performed by three types of interactions: hydrophobic interactions between β-strands in different subunits, salt bridges and hydrogen bonds between β-strands. In cupin dimers, the hydrophobic interactions occur between two βI strands in different subunits (Fig. 1A and B). This strand represents the central axis of rotation of the dimer as one residue in βI interacts with the corresponding residue in the other subunit (Fig. 1B). Therefore, all residues in βI must be hydrophobic, as one residue interacts with the other subunit and the next one in the sequence interacts with the interior of the protein. Charged residues in βI would disrupt such interactions. Most cupin dimers have strong hydrophobic residues such as tryptophan (W), phenylalanine (F) and methionine (M) pointing towards the own subunit (↓), while small hydrophobic residues such as leucine (L), isoleucine (I), and valine (V) point to the other subunit (↑). A particular case is leucine that interacts with other subunits, for instance, βI = liaW (positions 217–220 in Fig. 1B) and βI = LVsw of type I and II NLP consensuses, respectively. Therefore, the pattern of hydropathicity suggests that the side chain orientation is βI = l217 ↑ i218 ↓ a219 ↑ W220 ↓ d221 ↑. However we observe that just after βI there is a charged residue (aspartate D221) which would point outwards disrupting the dimer or at least making it less stable. It is interesting to observe that the requirement for a negatively charged residue at this last position is very high: 96% of all type I NLPs contains an aspartate (D) or glutamate (E) indicating an important role for it, maybe in avoiding dimerization of the NLPs. A second interesting hypothesis is as follows: several cupins are oxygenases, decarboxylases, etc. and use a negatively charged residue, such as aspartate or glutamate as proton donor.1 Now, if the alternate pattern of side chains of the residues is βI = l217 ↓ i218 ↑ a219 ↓ W220 ↑ d221 ↓, instead of the previous one, then the aspartate or glutamate residue would point to the hydrophobic pocket and would be positioned to interact with the metal ion, as in cupins with enzymatic activity. However, there are no experimental evidences that the NLPs have enzymatic activity.Open in a separate windowFigure 1(A) Three-dimensional structure prediction for type I NLP consensus, (B) Interface between two βI strands in type I NLP consensus. From the left to the right: EF-coil with the conserved residue H162, βC and βH strands (superposed) with the conserved histidines H133 and H135 in βC, H193 and leucine L195 in βH, W220 in βI and W118 in βB. The strands in the right subunit follow the same pattern but rotated.The second type of interaction is salt bridges between charged residues in different subunits. Analyzing all interacting side chains in the 1VJ2 protein (dimer), we verify that the charged side chains of N35 and E57 (numbers in original structure) are only 2.72 Å apart. In the NLPs, this corresponds to N10836% (Q10860%) at the border of βB and E13898%. The negatively charged residue D125 helps to correct the orientation of the subunits in relation to each other avoiding any disorientation. The high conservation level of these residues suggests that NLPs are dimeric structures. However, as we will see next, only hydrophobic and charged interactions are not enough to build a dimer.Garcia et al. (2007)2 have used small angle X-ray scattering (SAXS) to show that, in solution, at low concentrations (<2 mg/ml) the two copies of the NLPs of Moniliophthora perniciosa, MpNEP1 and MpNEP2, exist as dimers and monomers, respectively. The same technique showed that at higher concentrations, >5 mg/ml, both proteins exist as dimers, as is the case for PpNPP1.2 They also reported, based on electrophoresis analysis, that PpNPP1 and MpNEP1 exist as oligomers and MpNEP2 as monomers.2 However, experiments with the PpNPP1 in size exclusion chromatography using myoglobin as size standard suggest that PpNPP1 is a monomer.3 Figure 2 compares MpNEP1, MpNEP2 and PpNPP1, where the most relevant differences in sequence are marked with asterisks (*) and are possibly related to the differences in oligomeric properties between MpNEP1 and PpNPP1 with MpNEP2. These positions are methionine M27 and leucine L35, which occur only in MpNEP2, glycine G250, which occurs only in MpNEP2 and NEP1 (Fusarium oxysporum) and lysine K31, which occurs only MpNEP2, BAB04114 (Bacillus halodurans) and AAU23136 (Bacillus licheniformis). The other residues are aspartate D28, which occurs 9 times and alanine A37 which occurs 7 times of all investigated NLPs. Thus, the sequence mdHDkiakl at the start of the NLPs seems to explain the monomeric state of MpNEP2, although at higher concentrations they form dimers. Besides the weak hydrophobic interactions, dimeric cupins and bicupins (two β barrels in the same sequence building up a dimeric-like 4d-structure) are stable structures (see Fig. 1 in ref. 4). By aggregating the first β-strand in the start domain of one β-barrel to the ABIDG β-sheet of the other β-barrel, composing a big ABIDGY β-sheet (Y is the first β-strand). For instance, using the bicupin 1L3J (oxalate decarboxylase) as template, the low confidence level β-strand at position 26–33 (v in H29D30 avv) in type I NLPs corresponds to the first β-strand. Since this proceeds from both barrels they can build a stable structure (see Fig. 1 in ref. 4). The quaternary structure is related to the presence of interaction residues in the BID β-sheet of the cupin structure. These are present in the NLPs and would enable them to form dimers.Open in a separate windowFigure 2Alignment of type I NLP consensus, PpNPP1, MpNEP1 and MpNEP2. Solid line boxes are β-strands, double line boxes are α-helices. The sequence positions marked with asterisks (*) are possibly related to the differences in oligomeric properties between MpNEP1 and PpNPP1 with MpNEP2.  相似文献   
145.
146.
The tempisque (Sideroxylon capiri) is a tree native to Mexico used by the rural population for housing construction, poles and hedges, as fuel (wood) and also for fodder and ornamental purposes, among others. It is considered an endangered species. In order to contribute to its preservation and sustainable management, it was considered important to determine the proportion of viable seeds, the loss of viability due to storage period and the germination process by applying pregerminative treatments. We found that freshly collected seeds showed 100% viability, which decreased to 0% after 5 months of storage. According to the cumulative germination significant differences between treatments (p≤0.01) were found. It was observed that seeds can accelerate their time of germination with the previous exposure of 24 h in water at room temperature. The soaking treatment in water for 24 h at room temperature obtained final germination of 55%, while with the control 39% was reached. Soaking in hydrogen peroxide and scarification were the treatments with lower germination percentage (33 and 23%, respectively). To get a higher percentage of germinated seeds in a short time, it is necessary to give a soaking treatment in water for 24 h before sowing.  相似文献   
147.
A comparative kinetic study of extracellular catalases produced by Penicillium piceum F-648 and their variants adapted to H2O2 was performed in culture liquid filtrates. The specific activity of catalase, the maximum rate of catalase-induced H2O2 degradation (V max), V max/K M ratio, and the catalase inactivation rate constant in the enzymatic reaction (k in, s–1) were estimated in phosphate buffer (pH 7.4) at 30°C. The effective constant representing the rate of catalase thermal inactivation (k in *, s–1) was determined at 45°C. In all samples, the specific activity and K M for catalase were maximum at a protein concentration in culture liquid filtrates of (2.5–3.5) × 10–4 mg/ml. The effective constants describing the rate of H2O2 degradation (k, s–1) were similar to that observed in the initial culture. These values reflected a twofold decrease in catalase activity in culture liquid filtrates. We hypothesized that culture liquid filtrates contain two isoforms of extracellular catalase characterized by different activities and affinities for H2O2. Catalases from variants 5 and 3 with high and low affinities for H2O2, respectively, had a greater operational stability than the enzyme from the initial culture. The method of adaptive selection for H2O2 can be used to obtain fungal variants producing extracellular catalases with improved properties.  相似文献   
148.
149.
Summary Enteropeptidase (enterokinase EC 3.4.21.9), catalyzing trypsinogen activation, exhibits unique properties for high efficiency hydrolysis of the polypeptide chain after the N-terminal tetraaspartyl-lysyl sequence. This makes it a convenient tool for the processing of fusion proteins containing this sequence. We found the enteropeptidase-catalysing degradation of some bioactive peptides: cattle hemoglobin beta-chain fragments Hb (2–8) (LTAEEKA) and Hb (1–9) (MLTAEEKAA), human angiotensin II (DRVYIHPF) (AT). Model peptides with truncated linker WDDRG and WDDKG also were shown to be susceptible to enteropeptidase action. Kinetic parameters of enteropeptidase hydrolysis for these substrates were determined.K m values for all substrates with truncated linker (≈10−3 M) are an order of magnitude higher than corresponding values for typical enteropeptidase artificial peptide or fusion protein substrates with full enteropeptidase linker-DDDDK-(K m ≈10−4 M).k cat values for AT, Hb (2–8), WDDRG and WDDKG are ≈30–40 min−1. But one additional amino acid residue at both N-and C-terminus of Hb (2–8) results in a drastic increase of hydrolysis efficiency:k cat value for Hb (1–9) is 1510 min−1. Recent study demonstrates the possibility of undesirable cleavage of target peptides or proteins containing the above-mentioned truncated linker sequences; further, the ability of enteropeptidase to hydrolyse specifically several biologically active peptidesin vitro along with its unique natural substrate trypsinogen was demonstrated.  相似文献   
150.
Semashko  T. V.  Mikhailova  R. V.  Lobanok  A. G. 《Microbiology》2004,73(3):286-291
The main parameters of growth and glucose oxidase production by the mutant Penicillium funiculosum strains BIM F-15.3, NMM95.132, and 46.1 were studied. The synthesis of extracellular glucose oxidase by these strains was constitutive and occurred following the phase of exponential growth. The mutant strains also synthesized extracellular invertase and cell-associated catalase and glucose oxidase. The syntheses of invertase, the cell-associated enzymes, and extracellular glucose oxidase were found to be maximum between 14 and 18 h, between 48 and 52 h, and by the 96th hour of cultivation, respectively. Among the mutants studied, P. funiculosum 46.1 showed the maximal rates of growth and glucose oxidase synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号