首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   31篇
  2021年   4篇
  2020年   9篇
  2019年   4篇
  2018年   10篇
  2017年   4篇
  2016年   8篇
  2015年   13篇
  2014年   15篇
  2013年   18篇
  2012年   16篇
  2011年   23篇
  2010年   15篇
  2009年   8篇
  2008年   22篇
  2007年   10篇
  2006年   19篇
  2005年   11篇
  2004年   16篇
  2003年   16篇
  2002年   12篇
  2001年   11篇
  2000年   11篇
  1999年   17篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   7篇
  1991年   5篇
  1990年   10篇
  1989年   6篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   5篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
  1969年   1篇
  1967年   1篇
  1966年   6篇
  1964年   2篇
排序方式: 共有379条查询结果,搜索用时 187 毫秒
91.
CD69 is highly expressed by lymphocytes at mucosal surfaces. We aimed to investigate the role of CD69 in mucosal immune responses. The expression of CD69 by CD4 T cells isolated from the spleen, mesenteric lymph nodes, small intestinal lamina propria, and colonic lamina propria was determined in specific pathogen-free B6 and TCR transgenic animals, as well as in germ-free B6 mice. Transfer colitis was induced by transplanting RAG(-/-) mice with B6 or CD69(-/-)CD45RB(high) CD4 T cells. CD69 expression by CD4 T cells is induced by the intestinal microflora, oral delivery of specific Ag, and type I IFN (IFN-I) signals. CD4 T cells from CD69(-/-) animals produce higher amounts of the proinflammatory cytokines IFN-γ, TNF-α, and IL-21, whereas the production of TGF-β1 is decreased. CD69-deficient CD4 T cells showed reduced potential to differentiate into Foxp3(+) regulatory T cells in vivo and in vitro. The transfer of CD69(-/-)CD45RB(high) CD4 T cells into RAG(-/-) hosts induced an accelerated colitis. Oral tolerance was impaired in CD69(-/-) and IFN-I receptor 1-deficient mice when compared with B6 and OT-II × RAG(-/-) animals. Polyinosinic-polycytidylic acid treatment of RAG(-/-) mice transplanted with B6 but not CD69(-/-) or IFN-I receptor 1-deficient CD45RB(high) CD4 T cells attenuated transfer colitis. CD69 deficiency led to the increased production of proinflammatory cytokines, reduced Foxp3(+) regulatory T cell induction, impaired oral tolerance, and more severe colitis. Hence, the activation Ag CD69 plays an important role in regulating mucosal immune responses.  相似文献   
92.
Flagellin, the structural protein subunit of the bacterial flagellum, is specifically recognized by TLR-5 and has potent immunomodulatory effects. The antitumor effects of purified Salmonella typhimurium flagellin were evaluated in mice transplanted s.c. with a weakly immunogenic murine tumor or with its variant stably transfected to express the highly antigenic human HER-2 oncoprotein. Peritumoral administration of flagellin 8-10 days after tumor implantation did not affect the growth rate of the weakly immunogenic tumor but significantly inhibited growth of the antigenic variant tumor. In contrast, flagellin administered at the time of implantation of the antigenic tumor led to accelerated tumor growth. These contrasting effects of flagellin on tumor growth correlated with the type of immune response induced; i.e., late flagellin administration was associated with an increased IFN-gamma:IL-4 ratio and the decreased frequency of CD4+CD25+ T regulatory cells, whereas flagellin treatment at the time of tumor implantation decreased the IFN-gamma:IL-4 ratio and increased CD4+CD25+ T cell frequency. When the early flagellin treatment was combined with administration of CpG-containing oligodeoxynucleotides, tumor growth was completely suppressed, indicating synergy between flagellin and CpG-containing oligodeoxynucleotides. Together, these data provide evidence that flagellin can have contrasting effects on tumor growth.  相似文献   
93.
We cloned XYL1, a Scytalidium acidophilum gene encoding for an acidophilic family 11 xylanase. The XYL1p protein was expressed in Pichia pastoris using the pPICZalphaA expression plasmid. The secreted protein was purified by TAXI affinity column chromatography. The purified XYL1p showed an optimum activity at pH 3.2 and 56 degrees C. The Michaelis-Menten constants were determined.  相似文献   
94.
In the barley (Hordeum vulgare) Hooded (Kap) mutant, the duplication of a 305-bp intron sequence leads to the overexpression of the Barley knox3 (Bkn3) gene, resulting in the development of an extra flower in the spikelet. We used a one-hybrid screen to identify four proteins that bind the intron-located regulatory element (Kap intron-binding proteins). Three of these, Barley Ethylene Response Factor1 (BERF1), Barley Ethylene Insensitive Like1 (BEIL1), and Barley Growth Regulating Factor1 (BGRF1), were characterized and their in vitro DNA-binding capacities verified. Given the homology of BERF1 and BEIL1 to ethylene signaling proteins, we investigated if these factors might play a dual role in intron-mediated regulation and ethylene response. In transgenic rice (Oryza sativa), constitutive expression of the corresponding genes produced phenotypic alterations consistent with perturbations in ethylene levels and variations in the expression of a key gene of ethylene biosynthesis. In barley, ethylene treatment results in partial suppression of the Kap phenotype, accompanied by up-regulation of BERF1 and BEIL1 expression, followed by down-regulation of Bkn3 mRNA levels. In rice protoplasts, BEIL1 activates the expression of a reporter gene driven by the 305-bp intron element, while BERF1 can counteract this activation. Thus, BEIL1 and BERF1, likely in association with other Kap intron-binding proteins, should mediate the fine-tuning of Bkn3 expression by ethylene. We propose a hypothesis for the cross talk between the KNOX and ethylene pathways.  相似文献   
95.
To identify genes involved in vascular patterning in Arabidopsis (Arabidopsis thaliana), we screened for abnormal venation patterns in a large collection of leaf shape mutants isolated in our laboratory. The rotunda1-1 (ron1-1) mutant, initially isolated because of its rounded leaves, exhibited an open venation pattern, which resulted from an increased number of free-ending veins. We positionally cloned the RON1 gene and found it to be identical to FRY1/SAL1, which encodes an enzyme with inositol polyphosphate 1-phosphatase and 3′ (2′),5′-bisphosphate nucleotidase activities and has not, to our knowledge, previously been related to venation patterning. The ron1-1 mutant and mutants affected in auxin homeostasis share perturbations in venation patterning, lateral root formation, root hair length, shoot branching, and apical dominance. These similarities prompted us to monitor the auxin response using a DR5-GUS auxin-responsive reporter transgene, the expression levels of which were increased in roots and reduced in leaves in the ron1-1 background. To gain insight into the function of RON1/FRY1/SAL1 during vascular development, we generated double mutants for genes involved in vein patterning and found that ron1 synergistically interacts with auxin resistant1 and hemivenata-1 but not with cotyledon vascular pattern1 (cvp1) and cvp2. These results suggest a role for inositol metabolism in the regulation of auxin responses. Microarray analysis of gene expression revealed that several hundred genes are misexpressed in ron1-1, which may explain the pleiotropic phenotype of this mutant. Metabolomic profiling of the ron1-1 mutant revealed changes in the levels of 38 metabolites, including myoinositol and indole-3-acetonitrile, a precursor of auxin.During the vegetative development of Arabidopsis (Arabidopsis thaliana), leaves are produced from the shoot apical meristem in an orchestrated program that involves patterning and cell division, expansion, and differentiation. The mature vegetative leaves of Arabidopsis are histologically simple and consist of the outer epidermis and internal mesophyll and vasculature (Tsukaya, 2005). Veins are crucial for normal leaf function, transporting water, minerals, and photosynthate and providing mechanical support to the lamina (Evert and Eichhorn, 2006). The leaves of many vascular plants, such as the angiosperms, exhibit a closed reticulate venation pattern (Roth-Nebelsick et al., 2001). In Arabidopsis, the leaf venation pattern is brochidodromous, with a single primary vein (midvein) and a series of loops formed by secondary veins that connect other secondary and higher order veins (Hickey, 1973; Candela et al., 1999).Vein differentiation must be spatially and temporally regulated throughout leaf development. Many aspects of venation patterning in plant leaves can be explained by the auxin canalization model (Sachs, 1991; Rolland-Lagan and Prusinkiewicz, 2005), which is supported by considerable experimental evidence. The role of auxin in venation pattern formation is supported by the phenotypes of mutants possessing altered auxin biosynthesis or perception (Alonso-Peral et al., 2006; Cheng et al., 2006), experimental perturbation of auxin transport (Mattsson et al., 1999; Sieburth, 1999), and the expression pattern of auxin-responsive reporter transgenes (Mattsson et al., 2003; Scarpella et al., 2006). The phenotypes of mutants impaired in auxin transport, such as scarface (sfc; Deyholos et al., 2000; Sieburth et al., 2006) and pin-formed1 (pin1; Okada et al., 1991; Gälweiler et al., 1998), and perception, such as monopteros (mp; Hardtke and Berleth,1998), are pleiotropic and include defects in vein patterning or differentiation. The sfc mutant exhibits a disconnected venation pattern (Deyholos et al., 2000), and the lateral organs of strong mp mutants display a reduced venation pattern with no peripheral veins (Przemeck et al., 1996). In contrast, the leaf venation pattern of pin1 mutants resembles that of wild-type plants treated with auxin transport inhibitors, exhibiting extra primary and secondary veins and an accumulation of vascular elements along the leaf margin (Mattsson et al., 1999).Unlike sfc, pin1, or mp, other leaf venation mutants are not primarily affected in auxin production, perception, or transport (Carland et al., 1999). Examples include cotyledon vascular pattern1 (cvp1), the cotyledons of which exhibit isolated patches of vascular tissue (Carland et al., 1999, 2002), and cvp2, which exhibits increased numbers of free-ending veins in the cotyledons and leaves (Carland et al., 1999; Carland and Nelson, 2004). CVP1 encodes the STEROL METHYLTRANSFERASE2 (SMT2) protein, an enzyme that functions in the sterol biosynthetic pathway (Carland et al., 2002). CVP2 encodes an inositol polyphosphate 5′-phosphatase (5PTase; Carland and Nelson, 2004), which mediates the hydrolysis of inositol 1,4,5-trisphosphate (IP3), a eukaryotic second messenger with a pivotal role in calcium signaling (Berridge, 2009). IP3 controls cytosolic calcium levels by regulating calcium release from the vacuole and endoplasmic reticulum (Krinke et al., 2007). The disconnected, open venation pattern of cvp2 cotyledons and leaves suggested a role for intracellular IP3 levels in vascular development (Carland and Nelson, 2004). Recently, CVP2 and another 5PTase, CVP2-LIKE1 (CVL1), have been shown to regulate vein patterning through the production of a specific phosphoinositide (PI) that acts as a ligand for SFC/VASCULAR NETWORK3 (VAN3), which in turn controls the traffic of vesicles that accounts for the polar subcellular localization of PIN1 proteins (Carland and Nelson, 2009; Naramoto et al., 2009). Another inositol 5PTase, At5PTase13, has been shown to play a role in auxin-mediated vein development in cotyledons (Lin et al., 2005). Furthermore, the open vein networks present in the leaves of forked and tornado mutants (Steynen and Schultz, 2003; Cnops et al., 2006) may be due to altered auxin perception or distribution.To identify genes required for venation patterning, we screened for naturally occurring variations in the venation pattern of Arabidopsis vegetative leaves (Candela et al., 1999). In this way, we discovered the spontaneously occurring hemivenata-1 (hve-1) mutation, which causes a venation pattern that is significantly simpler than those of other wild types, such as Landsberg erecta (Ler) and Columbia-0 (Col-0). We positionally cloned the HVE gene, which encodes a CAND1 protein involved in ubiquitin-mediated auxin signaling (Alonso-Peral et al., 2006). To identify additional loci necessary for vascular patterning, we screened for venation pattern defects in a collection of leaf shape mutants isolated in our laboratory after ethyl methanesulfonate (EMS) mutagenesis (Berná et al., 1999) and found that the rotunda1-1 (ron1-1) mutant, named after the round laminae of its vegetative leaves, displays disconnected leaf veins. Here, we describe the phenotypic characterization of the ron1-1 mutant and the map-based cloning of RON1, which encodes an inositol polyphosphate 1-phosphatase that plays a role in venation patterning, as determined by morphological, reporter gene, and double mutant analyses. Our results suggest an interplay between inositol and auxin signaling in a number of developmental pathways, including those responsible for leaf venation pattern formation.  相似文献   
96.
Phenylpropanoid glycosides are water-soluble compounds widely distributed, most of them deriving from medicinal herbs. Among them, verbascoside or acteoside has exhibited a wide biological activity, being free radical scavenging the most representative one. Moreover, antitumor, antimicrobial, anti-inflammatory, anti-thrombotic and wound healing properties have been previously described. Herein, the interaction of verbascoside with phospholipid membranes has been studied by means of differential scanning calorimetry, fluorescence anisotropy and dynamic light scattering. Verbascoside showed stronger affinity for negatively charged membranes composed of phosphatidylglycerol (PG) than for phosphatidylcholine (PC) membranes. This compound promoted phase separation of lipid domains in PC membranes and formed a stable lipid complex with and approximate phospholipid/verbascoside ratio of 4:1. Despite its hydrophilic character, verbascoside's caffeoyl moiety was located deep into the hydrophobic core of PC membranes and was almost inaccessible to spin probes located at different depths in PG membranes. This compound affected the ionization behavior of the PG phosphate group and most likely interacted with the vesicles surface. The presence of verbascoside decreased the particle size in PG unilamellar vesicles through the increase of the phospholipid head group area. A localization of verbascoside filling the upper region of PG bilayers close to the phospholipid/water interface is proposed. These effects on membranes may help to understand the mechanism of the biological activity of verbascoside and other similar phenylpropanoid glycosides.  相似文献   
97.
Human T-cell leukemia virus type-1 (HTLV-1) encodes a mitochondrial protein named p13. p13 mediates an inward K+ current in isolated mitochondria that leads to mitochondrial swelling, depolarization, increased respiratory chain activity and reactive oxygen species (ROS) production. These effects trigger the opening of the permeability transition pore and are dependent on the presence of K+ and on the amphipathic alpha helical domain of p13. In the context of cells, p13 acts as a sensitizer to selected apoptotic stimuli. Although it is not known whether p13 influences the activity of endogenous K+ channels or forms a channel itself, it shares some structural and functional analogies with viroporins, a class of small integral membrane proteins that form pores and alter membrane permeability.  相似文献   
98.

Introduction  

The aim of this study was to estimate the prevalence and determinants of vitamin D deficiency in patients with rheumatoid arthritis (RA) as compared to healthy controls and to analyze the association between 25-hydroxyvitamin D (25(OH)D) with disease activity and disability.  相似文献   
99.
Congenitally lymphopenic diabetes-prone (DP) BioBreeding (BB) rats develop spontaneous T cell-dependent autoimmunity. Coisogenic diabetes-resistant (DR) BB rats are not lymphopenic and are free of spontaneous autoimmune disease, but become diabetic in response to depletion of RT6+ T cells. The basis for the predisposition to autoimmunity in BB rats is unknown. Abnormal T cell development in DP-BB rats can be detected intrathymically, and thymocytes from DR-BB rats adoptively transfer diabetes. The mechanisms underlying these T cell developmental abnormalities are not known. To study these processes, we established adult thymus organ cultures (ATOC). We report that cultured DR- and DP-BB rat thymi generate mature CD4 and CD8 single-positive cells with up-regulated TCRs. DR-BB rat cultures also generate T cells that express RT6. In contrast, DP-BB rat cultures generate fewer CD4+, CD8+, and RT6+ T cells. Analysis of the cells obtained from ATOC suggested that the failure of cultured DP-BB rat thymi to generate T cells with a mature phenotype is due in part to an increased rate of apoptosis. Consistent with this inference, we observed that addition of the general caspase inhibitor Z-VAD-FMK substantially increases the number of both mature and immature T cells produced by DP-BB rat ATOC. We conclude that cultured DR-BB and DP-BB rat thymi, respectively, recapitulate the normal and abnormal T cell developmental kinetics and phenotypes observed in these animals in vivo. Such cultures should facilitate identification of the underlying pathological processes that lead to immune dysfunction and autoimmunity in BB rats.  相似文献   
100.
Brief treatment with alphaCD154 Ab has been shown to prevent acute graft versus host disease (aGvHD). We extend these data to show that in the absence of CD154 function, donor T cells are unable to expand or generate high level anti-host CTL activity. Using transgenic (Tg) alloreactive CD8+ T cells adoptively transferred into allogeneic recipients, we show that short-term expansion of the CD8+ Tg T cells occurred in the absence of Th cells, and this short-term expansion could be facilitated with an agonistic alphaCD40. While CD40 agonism could enhance short-term expansion, sustained expansion of CD8+ Tg T cells required bona fide CD154-expressing CD4+ alloreactive Th cells. While CD154 was necessary for CD8+ Tg T cell sustained expansion, IL-2 was also implicated as essential. These observations suggest alphaCD154 therapy in GvHD is effective because the treatment causes an abortive CD8 alloresponse leading to the exhaustion or deletion of alloreactive CD8+ clones preventing the development of disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号