首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   5篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   8篇
  2012年   4篇
  2011年   4篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2001年   2篇
  1999年   2篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1971年   1篇
  1928年   1篇
排序方式: 共有64条查询结果,搜索用时 156 毫秒
11.
In male rats, methionine-enkephalin immunoreactivity (enkephalin-ir) has been observed in the dorsal lateral nucleus (DLN), a longitudinal pool of motoneurons in the lumbar spinal cord. Within the DLN a mediodorsal crescent of intense enkephalin-ir staining surrounds the motoneurons innervating the ischiocavernosus muscle of the penis, which suggests a function of the enkephalinergic afferents in male copulatory activities. The present study attempted to determine the roles of gender and adult exposure to androgen in shaping the striking subnuclear distribution of enkephalin-ir. Transverse sections through L5-6 were obtained from mature male and female rats that were gonadally intact, gonadectomized, or gonadectomized and treated with testosterone, as well as from male rats genetically deficient in androgen receptors (Tfm). The sections were incubated with primary antiserum raised against methionine enkephalin and bound antibodies were visualized using the avidin-biotin-peroxidase technique. A microphotometer was used to compare the staining density in laminae I-II of the dorsal horn, ventral grey matter, and the DLN. In all groups the DLN stained more darkly than the ventral grey, demonstrating the presence of enkephalin-ir in the DLN regardless of gender or exposure to androgen. However, the mediodorsal crescent of dense staining in the DLN was obvious only in gonadally intact males, while the entire DLN stained darkly in both sexes of gonadectomized rats treated with androgen. Therefore, the preferential distribution of enkephalin-ir in the mediodorsal crescent of the DLN is sexually dimorphic though the overall content of enkephalin-ir within the DLN responds to androgen.  相似文献   
12.
An inhibitor of microRNA-122 reduces viral load in chimpanzees that are chronically infected with hepatitis C virus, suggesting that such an approach might have therapeutic potential in humans.  相似文献   
13.
Mu-opioid receptor (MOR) and opioid receptor-like receptor (ORL-1) circuits in the limbic hypothalamic system are important for the regulation of sexual receptivity in the female rat. Sexual receptivity is tightly regulated by the sequential release of estrogen and progesterone from the ovary suggesting ovarian steroids regulate the activity of these neuropeptide systems. Both MOR and ORL-1 distributions overlap with the distribution of estrogen and progesterone receptors in the hypothalamus and limbic system providing a morphological substrate for interaction between steroids and the opioid circuits in the brain. Both MOR and ORL-1 are receptors that respond to activation by endogenous ligands with internalization into early endosomes. This internalization is part of the mechanism of receptor desensitization or down regulation. Although receptor activation and internalization are separate events, internalization can be used as a temporal measure of circuit activation by endogenous ligands. This review focuses on the estrogen and progesterone regulation of MOR and ORL-1 circuits in the medial preoptic nucleus and ventromedial nucleus of the hypothalamus that are central to modulating sexual receptivity.  相似文献   
14.
Estradiol (E2) action in the nervous system is the result of both direct nuclear and membrane-initiated signaling (EMS). E2 regulates membrane estrogen receptor-α (ERα) levels through opposing mechanisms of EMS-mediated trafficking and internalization. While ß-arrestin-mediated mERα internalization has been described in the cortex, a role of ß-arrestin in EMS, which underlies multiple physiological processes, remains undefined. In the arcuate nucleus of the hypothalamus (ARH), membrane-initiated E2 signaling modulates lordosis behavior, a measure of female sexually receptivity. To better understand EMS and regulation of ERα membrane levels, we examined the role of ß-arrestin, a molecule associated with internalization following agonist stimulation. In the present study, we used an immortalized neuronal cell line derived from embryonic hypothalamic neurons, the N-38 line, to examine whether ß-arrestins mediate internalization of mERα. β-arrestin-1 (Arrb1) was found in the ARH and in N-38 neurons. In vitro, E2 increased trafficking and internalization of full-length ERα and ERαΔ4, an alternatively spliced isoform of ERα, which predominates in the membrane. Treatment with E2 also increased phosphorylation of extracellular-signal regulated kinases 1/2 (ERK1/2) in N-38 neurons. Arrb1 siRNA knockdown prevented E2-induced ERαΔ4 internalization and ERK1/2 phosphorylation. In vivo, microinfusions of Arrb1 antisense oligodeoxynucleotides (ODN) into female rat ARH knocked down Arrb1 and prevented estradiol benzoate-induced lordosis behavior compared with nonsense scrambled ODN (lordosis quotient: 3 ± 2.1 vs. 85.0 ± 6.0; p < 0.0001). These results indicate a role for Arrb1 in both EMS and internalization of mERα, which are required for the E2-induction of female sexual receptivity.  相似文献   
15.
Microbial‐mediated decomposition of soil organic matter (SOM) ultimately makes a considerable contribution to soil respiration, which is typically the main source of CO2 arising from terrestrial ecosystems. Despite this central role in the decomposition of SOM, few studies have been conducted on how climate change may affect the soil microbial community and, furthermore, on how possible climate‐change induced alterations in the ecology of microbial communities may affect soil CO2 emissions. Here we present the results of a seasonal study on soil microbial community structure, SOM decomposition and its temperature sensitivity in two representative Mediterranean ecosystems where precipitation/throughfall exclusion has taken place during the last 10 years. Bacterial and fungal diversity was estimated using the terminal restriction fragment length polymorphism technique. Our results show that fungal diversity was less sensitive to seasonal changes in moisture, temperature and plant activity than bacterial diversity. On the other hand, fungal communities showed the ability to dynamically adapt throughout the seasons. Fungi also coped better with the 10 years of precipitation/throughfall exclusion compared with bacteria. The high resistance of fungal diversity to changes with respect to bacteria may open the controversy as to whether future ‘drier conditions’ for Mediterranean regions might favor fungal dominated microbial communities. Finally, our results indicate that the fungal community exerted a strong influence over the temporal and spatial variability of SOM decomposition and its sensitivity to temperature. The results, therefore, highlight the important role of fungi in the decomposition of terrestrial SOM, especially under the harsh environmental conditions of Mediterranean ecosystems, for which models predict even drier conditions in the future.  相似文献   
16.

Background

CCN2, (a.k.a. connective tissue growth factor and CTGF) has emerged as a regulator of cell migration. While the importance of CCN2 for the fibrotic process in wound healing has been well studied, the effect of CCN2 on keratinocyte function is not well understood. In this study, we investigated the mechanism behind CCN2-driven keratinocyte adhesion and migration.Materials and methods: Adhesion assays were performed by coating wells with 10 μg/ml fibronectin (FN) or phosphate-buffered saline (PBS). Keratinocytes were seeded in the presence or absence of 200 ng/ml CCN2, 5 mmol/l ethylenediaminetetraacetic acid, 10 mmol/l cations, 500 μl arginine–glycine–aspartic acid (RGD), 500 μM arginine–glycine–glutamate–serine (RGES), and 10 μg/ml anti-integrin blocking antibodies. Migration studies were performed using a modified Boyden chamber assay. Quantitative PCR was used to study the effect of CCN2 on integrin subunit mRNA expression. To block intracellular pathways, keratinocytes were pretreated with 20 μM PD98059 (MEK-1 inhibitor) or 20 μM PF573228 (FAK inhibitor) for 60 min prior the addition of CCN2. Western blot was used to measure CCN2, p-ERK1/2, and ERK1/2.Results: CCN2 enhanced keratinocyte adhesion to fibronectin via integrin α5β1. The addition of anti-integrin α5β1 antibodies reduced CCN2-mediated keratinocyte migration. In addition, CCN2 regulated mRNA and protein expression of integrin subunits α5 and β1. CCN2 activated the FAK-MAPK signaling pathway, and pretreatment with MEK1-specific inhibitor PD98059 markedly reduced CCN2-induced keratinocyte migration.Conclusions: Our results demonstrate that CCN2 enhances keratinocyte adhesion and migration through integrin α5β1 and activation of the FAK-MAPK signaling cascade.  相似文献   
17.
18.
Reproduction is an event that requires the coordination of peripheral organs with the nervous system to ensure that the internal and external environments are optimal for successful procreation of the species. This is accomplished by the hypothalamic-pituitary-gonadal axis that coordinates reproductive behavior with ovulation. The primary signal from the central nervous system is gonadotropin-releasing hormone (GnRH), which modulates the activity of anterior pituitary gonadotropes regulating follicle stimulating hormone (FSH) and luteinizing hormone (LH) release. As ovarian follicles develop they release estradiol, which negatively regulates further release of GnRH and FSH. As estradiol concentrations peak they trigger the surge release of GnRH, which leads to LH release inducing ovulation. Release of GnRH within the central nervous system helps modulate reproductive behaviors providing a node at which control of reproduction is regulated. To address these issues, this review focuses on several critical questions. How is the HPG axis regulated in species with different reproductive strategies? What internal and external conditions modulate the synthesis and release of GnRH? How does GnRH modulate reproductive behavior within the hypothalamus? How does disease shift the activity of the HPG axis?  相似文献   
19.
Recently, using the medial forebrain bundle (MFB) 6-hydroxydopmaine (6-OHDA) lesion rat model of Parkinson's disease (PD), we have demonstrated that blockade of central IGF-1 receptors (IGF-1R) attenuated estrogen neuroprotection of substantia nigra pars compacta (SNpc) DA neurons, but exacerbated 6-OHDA lesions in IGF-1 only treated rats (Quesada and Micevych [2004]: J Neurosci Res 75:107-116). This suggested that the IGF-1 system is a central mechanism through which estrogen acts to protect the nigrostriatal DA system. Moreover, these results also suggest that IGF-1R-induced intracellular signaling pathways are involved in the estrogen mechanism that promotes neuronal survival. In vitro, two convergent intracellular signaling pathways used by estrogen and IGF-1, the mitogen-activated protein kinase (MAPK/ERK), and phosphatidyl-inositol-3-kinase/Akt (PI3K/Akt), have been demonstrated to be neuroprotective. Continuous central infusions of MAPK/ERK and PI3K/Akt inhibitors were used to test the hypothesis that one or both of these signal transduction pathways mediates estrogen and/or IGF-1 neuroprotection of SNpc DA neurons after a unilateral administration of 6-OHDA into the MFB of rats. Motor behavior tests and tyrosine hydroxylase immunoreactivity revealed that the inhibitor of the PI3K/Akt pathway (LY294002) blocked the survival effects of both estrogen and IGF-1, while an inhibitor of the MAPK/ERK signaling (PD98059) was ineffective. Western blot analyses showed that estrogen and IGF-1 treatments increased PI3K/Akt activation in the SN; however, MAPK/ERK activation was decreased in the SN. Indeed, continuous infusions of inhibitors blocked phosphorylation of PI3K/Akt and MAPK/ERK. These findings indicate that estrogen and IGF-1-mediated SNpc DA neuronal protection is dependent on PI3K/Akt signaling, but not on the MAPK/ERK pathway.  相似文献   
20.
Polar solvents induce terminal differentiation in the human promyelocytic leukemia cell line HL-60. The present studies describe the functional changes that accompany the morphologic progression from promyelocytes to bands and poly-morphonuclear leukocytes (PMN) over 9 d of culture in 1.3 percent dimethylsulfoxide (DMSO). As the HL-60 cells mature, the rate of O(2-) production increase 18-fold, with a progressive shortening of the lag time required for activation. Hexosemonophosphate shunt activity rises concomitantly. Ingestin of paraffin oil droplets opsonized with complement or Ig increases 10-fold over 9 d in DMSO. Latex ingestion per cell by each morphologic type does not change significantly, but total latex ingestion by groups of cells increases with the rise in the proportion of mature cells with greater ingestion capacities. Degranulation, as measured by release of β-glucuronidase, lysozyme, and peroxidase, reaches maximum after 3-6 d in DMSO, then declines. HL-60 cells contain no detectable lactoferrin, suggesting that their secondary granules are absent or defective. However, they kill staphylococci by day 6 in DMSO. Morphologically immature cells (days 1-3 in DMSO) are capable of O(2-) generation, hexosemonophosphate shunt activity, ingestion, degranulation, and bacterial killing. Maximal performance of each function by cells incubated in DMSO for longer periods of time is 50-100 percent that of normal PMN. DMSO- induced differentiation of HL-60 cells is a promising model for myeloid development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号