首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
  2023年   2篇
  2022年   2篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   1篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
11.
12.
We have characterized the only mutation detected so far in S-Pcf, the mitochondrial cytoplasmic male sterility (CMS)-specific locus of petunia. This locus consists of three open reading frames (ORFs): the first contains part of atp9, an intron-less cox2 pseudogene (which does not contain the original cox2 ATG) and the unidentified reading frame urf-s; the second and third ORFs correspond to the only copies of nad3 and rps12 genes in the genome, respectively. In the cell line R13-138, which was generated from a male-sterile somatic hybrid (line SH13-138), a change in the first ORF of the S-Pcf locus has been characterized: the atp9 sequence has been lost, while exon1 of the normal copy of the cox2 gene (including the original ATG sequence) and the adjacent 5′ sequence of the petunia recombination repeat, have been introduced. The data suggest that this reorganization of mtDNA is the consequence of a homologous recombination event involving part of the cox2 coding region, and that the cox2 coding region may serve as an active site for inter- or intra-mtDNA homologous recombination. The results further suggest that in line SH13-138 (or during its maintenance in tissue culture), segregation of the S-Pcf-containing mtDNA molecules has occurred, and the mutant mtDNA is now predominant in the population.  相似文献   
13.

Since global warming affects wheat cropping systems, more has yet to be indicated on the parameters, which control terminal heat tolerance, and severely influence wheat (Triticum aestivum L.) productivity. Identification of tolerant wheat genotypes by heat tolerance-linked molecular markers is a rapid and cost-effective screening tool in plant breeding. Accordingly, in a four-year field experiment (2015–2019), 44 wheat genotypes were selected out of 100 genotypes, and were examined in timely and late planting (mid-January resulting in heat stress). Stress decreased yield components, including 1000-kernel weight (TKW), grains per spike, and plants per square meter, and the physiological traits, including days to heading and days to maturity, grain filling duration, and greenness, and eventually decreased grain yield up to?~?28%. The early maturity genotypes resulted in higher yields under stress conditions by a stress-avoidance mechanism. Among 14 SSR markers, GWM577 was positively correlated with yield, and WMS3062, GWM261, and WMS1025 had positive correlations with longevity under stress. Accordingly, WMS3062 and GWM261 can be used to determine high yield and early maturity genotypes. Furthermore, GWM114 showed a positive correlation with TKW, indicating their usefulness for grouping wheat genotypes and for identifying heat-related markers. Since the crossing of the genetically distant genotypes can create more diverse populations, the results could be applied to plan breeding projects to establish more diverse populations for different chromosomal locations and traits under heat stress conditions. Moreover, our findings demonstrated that the morphological and molecular analyses could be useful for describing wheat genetic variation of heat tolerance.

  相似文献   
14.
Summary In Petunia, a mitochondrial (mt) locus, S-Pcf, has been found to be strongly associated with cytoplasmic male sterility (CMS). The S-Pcf locus consists of three open reading frames (ORF) that are co-transcribed. The first ORF, termed Pcf, contains an unidentified reading frame urf-s that has been detected so far only in sterile Petunia lines and sterile somatic hybrids. In the study described here, a urf-s-related sequence was detected in seven different normal fertile Petunia lines and species as well as in additional members of the Solanaceae family by means of the polymerase chain reaction. The urf-s-related sequence identified in the fertile lines was termed orf152. In Petunia the nucleotide sequence of orf152 was found to be identical to the corresponding part of urf-s. However, the genome organization around orf152 was found to be different from that of urf-s. These results indicate that: (1) at least part of the urf-s sequence is present in fertile lines and species of Petunia and in other Solanaceae species; (2) the orf152 sequence of Petunia is not part of the Pcf ORF. The relevance of these findings to a better understanding of the evolution of the S-pcf locus in (S) cytoplasm in Petunia is discussed.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No. 3511-E, 1991 series  相似文献   
15.
The natural triterpene betulinic acid and its analogues (betulinic aldehyde, lupeol, betulin, methyl betulinate and betulinic acid amide) caused concentration-dependent alterations of erythrocyte membrane shape towards stomatocytes or echinocytes according to their hydrogen bonding properties. Thus, the analogues with a functional group having a capacity of donating a hydrogen bond (COOH, CH(2)OH, CONH(2)) caused formation of echinocytes, whereas those lacking this ability (CH(3), CHO, COOCH(3)) induced formation of stomatocytes. Both kinds of erythrocyte alterations were prohibitive with respect to Plasmodium falciparum invasion and growth; all compounds were inhibitory with IC(50) values in the range 7-28 microM, and the growth inhibition correlated well with the extent of membrane curvature changes assessed by transmission electron microscopy. Erythrocytes pre-loaded with betulinic acid or its analogues and extensively washed in order to remove excess of the chemicals could not serve as hosts for P. falciparum parasites. Betulinic acid and congeners can be responsible for in vitro antiplasmodial activity of plant extracts, as shown for Zataria multiflora Boiss. (Labiatae) and Zizyphus vulgaris Lam. (Rhamnaceae). The activity is evidently due to the incorporation of the compounds into the lipid bilayer of erythrocytes, and may be caused by modifications of cholesterol-rich membrane rafts, recently shown to play an important role in parasite vacuolization. The established link between erythrocyte membrane modifications and antiplasmodial activity may provide a novel target for potential antimalarial drugs.  相似文献   
16.
Summary. Ornithine decarboxylase (ODC) and diamine oxidase (DAO) are important enzymes involved in the metabolism of polyamines (putrescine, spermidine and spermine). The influence of testosterone (T) and 17, β– estradiol (E2) on the activity of ODC and DAO was examined in cultivated normal rat kidney (NRK) epithelial cells. The results showed an increase in enzyme activities 4 hours or 12 hours after hormonal treatment. Both T and E2 led to a significant increase (1.6-fold) in ODC protein level as compared to the controls. Cellular concentration of spermidine and spermine increased (2.2- and 2.6-fold respectively) 4 hours after T addition. A higher levels in concentrations of putrescine (1.4-fold) and spermine (1.5-fold) 12 hours after E2 treatment were observed. These results suggest that the biosynthesis and terminal oxidation of the polyamines in NRK epithelial cells are androgen- and estrogen-mediated and depend on the hormonal sensitivity of the cells. Received April 5, 1999, Accepted December 20, 1999  相似文献   
17.
Plant regeneration and transformation in vitro is often improved by adding silver ion (Ag+) to the culture media as AgNO3 or silver thiosulfate (STS). Ag+ reacts with substances to form insoluble precipitates, while thiosulfate (S2O3 2−) interferes with these reactions. We studied the implications of silver precipitation and S2O3 2− in the medium for culture development by (1) examining formation of Ag+ precipitates from AgNO3 versus STS in agar gels and their possible dependence on agar type; (2) comparing Corymbia maculata culture responses to AgNO3 and STS and determining which better suits control of culture development; (3) clarifying whether STS-dependent alterations in culture development are due to Ag+ alone or also to a separate influence of S2O3 2−. Silver precipitates appeared in aqueous gels of four agar brands supplemented with AgNO3, but not in Phytagel, which remained transparent. No precipitation was observed in gels with STS. Indole-3-butyric acid (IBA)-mediated adventitious root induction and shoot growth were higher in C. maculata shoot tips cultured on gels with STS versus AgNO3 (6–25 μM Ag+). IBA-treated shoot tips exhibited enhanced adventitious root regeneration, accelerated root elongation, increased frequency of lateral root formation, and stimulated shoot growth mediated by 100–250 μM sodium thiosulfate (Na2S2O3) in medium without Ag+. The potency of S2O3 2− in facilitating culture development has never been recognized. It is inferred that superiority of STS in stimulating multiple responses of C. maculata culture results from sustained biological activity of Ag+ through prevention of its precipitation, and from impact of S2O3 2− on cell differentiation and growth.  相似文献   
18.
The major barrier to effective cancer therapy is the presence of genetic and phenotypic heterogeneity within cancer cell populations that provides a reservoir of therapeutically resistant cells. As the degree of heterogeneity present within tumours will be proportional to tumour burden, the development of rapid, robust, accurate and sensitive biomarkers for cancer progression that could detect clinically occult disease before substantial heterogeneity develops would provide a major therapeutic benefit. Here, we explore the application of chromatin conformation capture technology to generate a diagnostic epigenetic barcode for melanoma. The results indicate that binary states from chromatin conformations at 15 loci within five genes can be used to provide rapid, non‐invasive multivariate test for the presence of melanoma using as little as 200 μl of patient blood.  相似文献   
19.
The ascomycete Mycosphaerella graminicola is the causal agent of septoria tritici blotch (STB), one of the most destructive foliar diseases of bread and durum wheat globally, particularly in temperate humid areas. A screening of the French bread wheat cultivars Apache and Balance with 30 M. graminicola isolates revealed a pattern of resistant responses that suggested the presence of new genes for STB resistance. Quantitative trait loci (QTL) analysis of a doubled haploid (DH) population with five M. graminicola isolates in the seedling stage identified four QTLs on chromosomes 3AS, 1BS, 6DS and 7DS, and occasionally on 7DL. The QTL on chromosome 6DS flanked by SSR markers Xgpw5176 and Xgpw3087 is a novel QTL that now can be designated as Stb18. The QTLs on chromosomes 3AS and 1BS most likely represent Stb6 and Stb11, respectively, and the QTLs on chromosome 7DS are most probably identical with Stb4 and Stb5. However, the QTL identified on chromosome 7DL is expected to be a new Stb gene that still needs further characterization. Multiple isolates were used and show that not all isolates identify all QTLs, which clearly demonstrates the specificity in the M. graminicola–wheat pathosystem. QTL analyses were performed with various disease parameters. The development of asexual fructifications (pycnidia) in the characteristic necrotic blotches of STB, designated as parameter P, identified the maximum number of QTLs. All other parameters identified fewer but not different QTLs. The segregation of multiple QTLs in the Apache/Balance DH population enabled the identification of DH lines with single QTLs and multiple QTL combinations. Analyses of the marker data of these DH lines clearly demonstrated the positive effect of pyramiding QTLs to broaden resistance spectra as well as epistatic and additive interactions between these QTLs. Phenotyping of the Apache/Balance DH population in the field confirmed the presence of the QTLs that were identified in the seedling stage, but Stb18 was inconsistently expressed and might be particularly effective in young plants. In contrast, an additional QTL for STB resistance was identified on chromosome 2DS that is exclusively and consistently expressed in mature plants over locations and time, but it was also strongly related with earliness, tallness as well as resistance to Fusarium head blight. Although to date no Stb gene has been reported on chromosome 2D, the data provide evidence that this QTL is only indirectly related to STB resistance. This study shows that detailed genetic analysis of contemporary commercial bread wheat cultivars can unveil novel Stb genes that can be readily applied in marker-assisted breeding programs.  相似文献   
20.

The most basic and significant issue in complex network analysis is community detection, which is a branch of machine learning. Most current community detection approaches, only consider a network's topology structures, which lose the potential to use node attribute information. In attributed networks, both topological structure and node attributed are important features for community detection. In recent years, the spectral clustering algorithm has received much interest as one of the best performing algorithms in the subcategory of dimensionality reduction. This algorithm applies the eigenvalues of the affinity matrix to map data to low-dimensional space. In the present paper, a new version of the spectral cluster, named Attributed Spectral Clustering (ASC), is applied for attributed graphs that the identified communities have structural cohesiveness and attribute homogeneity. Since the performance of spectral clustering heavily depends on the goodness of the affinity matrix, the ASC algorithm will use the Topological and Attribute Random Walk Affinity Matrix (TARWAM) as a new affinity matrix to calculate the similarity between nodes. TARWAM utilizes the biased random walk to integrate network topology and attribute information. It can improve the similarity degree among the pairs of nodes in the same density region of the attributed network, without the need for parameter tuning. The proposed approach has been compared to other primary and new attributed graph clustering algorithms based on synthetic and real datasets. The experimental results show that the proposed approach is more effective and accurate compared to other state-of-the-art attributed graph clustering techniques.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号