首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   8篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   8篇
  2018年   5篇
  2017年   1篇
  2016年   6篇
  2015年   10篇
  2014年   7篇
  2013年   16篇
  2012年   18篇
  2011年   20篇
  2010年   2篇
  2009年   4篇
  2008年   8篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   7篇
  2003年   6篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1994年   1篇
  1991年   1篇
  1985年   1篇
  1973年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有159条查询结果,搜索用时 34 毫秒
1.
Coronavirus (CoV) infections are commonly associated with respiratory and enteric disease in humans and animals. In 2012, a new human disease called Middle East respiratory syndrome (MERS) emerged in the Middle East. MERS was caused by a virus that was originally called human coronavirus-Erasmus Medical Center/2012 but was later renamed as Middle East respiratory syndrome coronavirus (MERS-CoV). MERS-CoV causes high fever, cough, acute respiratory tract infection, and multiorgan dysfunction that may eventually lead to the death of the infected individuals. The exact origin of MERS-CoV remains unknown, but the transmission pattern and evidence from virological studies suggest that dromedary camels are the major reservoir host, from which human infections may sporadically occur through the zoonotic transmission. Human to human transmission also occurs in healthcare facilities and communities. Recent studies on Middle Eastern respiratory continue to highlight the need for further understanding the virus-host interactions that govern disease severity and infection outcome. In this review, we have highlighted the major mechanisms of immune evasion strategies of MERS-CoV. We have demonstrated that M, 4a, 4b proteins and Plppro of MERS-CoV inhibit the type I interferon (IFN) and nuclear factor-κB signaling pathways and therefore facilitate innate immune evasion. In addition, nonstructural protein 4a (NSP4a), NSP4b, and NSP15 inhibit double-stranded RNA sensors. Therefore, the mentioned proteins limit early induction of IFN and cause rapid apoptosis of macrophages. MERS-CoV strongly inhibits the activation of T cells with downregulation of antigen presentation. In addition, uncontrolled secretion of interferon ɣ-induced protein 10 and monocyte chemoattractant protein-1 can suppress proliferation of human myeloid progenitor cells.  相似文献   
2.

Purpose  

Environmental footprints of wood pellets produced in British Columbia (BC) of Canada are to be estimated based on industry surveys and published emission factor data.  相似文献   
3.
4.

Background

Treatment for children with high-risk neuroblastoma with anti-disialoganglioside mAb ch14.18, IL-2, and GM-CSF plus 13-cis-retinoic acid after myeloablative chemotherapy improves survival, but 40 % of patients still relapse during or after this therapy. The microenvironment of high-risk neuroblastoma tumors includes macrophages, IL-6, and TGFβ1. We hypothesized that this microenvironment suppresses anti-tumor functions of natural killer (NK) cells and that lenalidomide, an immune-modulating drug, could overcome suppression.

Methods

Purified NK cells were cultured with IL-2, neuroblastoma/monocyte-conditioned culture medium (CM), IL-6, TGFβ1, and lenalidomide in various combinations and then characterized using cytotoxicity (direct and antibody-dependent cell-mediated cytotoxicity), cytokine, flow cytometry, and Western blotting assays. Anti-tumor activity of NK cells with lenalidomide, ch14.18, or both was evaluated with a xenograft model of neuroblastoma.

Results

CM from neuroblastoma/monocyte co-cultures contains IL-6 and TGFβ1 that suppress IL-2 activation of NK cell cytotoxicity and IFNγ secretion. IL-6 and TGFβ1 activate the STAT3 and SMAD2/3 pathways in NK cells and suppress IL-2 induction of cytotoxicity, granzymes A and B release, perforin expression, and IFNγ secretion. Lenalidomide blocks IL-6 and TGFβ1 activation of these signaling pathways and inhibits their suppression of NK cells. Neuroblastoma cells in NOD/SCID mice exhibit activated STAT3 and SMAD2/3 pathways. Their growth is most effectively inhibited by co-injected peripheral blood mononuclear cells (PBMC) containing NK cells when mice are treated with both ch14.18 and lenalidomide.

Conclusion

Immunotherapy with anti-tumor cell antibodies may be improved by lenalidomide, which enhances activation of NK cells and inhibits their suppression by IL-6 and TGFβ1.  相似文献   
5.
Introduction of exotic plants change soil microbial communities which may have detrimental ecological consequences for ecosystems. In this study, we examined the community structure and species richness of ectomycorrhizal (EcM) fungi associated with exotic pine plantations in relation to adjacent native ectomycorrhizal trees in Iran to elucidate the symbiont exchange between distantly related hosts, i.e. Fagales (Fagaceae and Betulaceae) and Pinaceae. The combination of morphological and molecular identification approaches revealed that 84.6 % of species with more than one occurrence (at least once on pines) were shared with native trees and only 5.9 % were found exclusively on pine root tips. The community diversity of ectomycorrhizal fungi in the pine plantations adjacent to native EcM trees was comparable to their adjacent native trees, but the isolated plantations hosted relatively a species-poor community. Specific mycobionts of conifers were dominant in the isolated plantation while rarely found in the plantations adjacent to native EcM trees. These data demonstrate the importance of habitat isolation and dispersal limitation of EcM fungi in their potential of host range expansion. The great number of shared and possibly compatible symbiotic species between exotic Pinaceae and local Fagales (Fagaceae and Betulaceae) may reflect their evolutionary adaptations and/or ancestral compatibility with one another.  相似文献   
6.
This paper looks at the series solutions of three dimensional boundary layer flow. An Oldroyd-B fluid with variable thermal conductivity is considered. The flow is induced due to stretching of a surface. Analysis has been carried out in the presence of heat generation/absorption. Homotopy analysis is implemented in developing the series solutions to the governing flow and energy equations. Graphs are presented and discussed for various parameters of interest. Comparison of present study with the existing limiting solution is shown and examined.  相似文献   
7.
Copper oxide nanomaterials were synthesized by a facile sustainable biological method using two plant species (Zanthoxylum armatum DC. and Berberis lycium Royle ). The formation of materials was confirmed by FT‐IR, ATR, UV‐visible, XRD, TEM, SEM, EDX, TGA and PL. The antibacterial activity was evaluated by agar well diffusion method to ascertain the efficacy of plant species extract and extract derived copper oxide nanomaterials against six Gram‐positive bacteria namely Staphylococcus aureus, Streptococcus mutans, Streptococcus pyogenes, Corynebacterium diphtheriae, Corynebacterium xerosis, Bacillus cereus and four Gram‐negative bacteria such as Klebsiella pneumonia, Escherichia coli, Pseudomonas aeruginosa and Proteus vulgaris against the standard drug, Ciprofloxacin for Gram‐positive and Gentamicin for Gram‐negative bacteria, respectively. In both cases, copper oxide nanomaterials were found to be sensitive in all the bacterial species. Sensitivity of copper oxide nanomaterials shows an be higher as compared to plant species extract against different bacteria. Scavenging activity of plant extracts along with nanomaterials have been accessed using previously reported protocols employing ascorbic acid as standard. Scavenging activity of copper oxide nanomaterials shows an increase with increase in concentration. The biological activity (bactericidal and scavenging efficiency) of plant derived copper oxide nanomaterials revealed that these materials can be used as potent antimicrobial agent and DPPH scavengers in industrial as well as pharmacological fields.  相似文献   
8.

Background

There is mounting interest in using c-kit positive human cardiac stem cells (c-kitpos hCSCs) to repair infarcted myocardium in patients with ischemic cardiomyopathy. A recent phase I clinical trial (SCIPIO) has shown that intracoronary infusion of 1 million hCSCs is safe. Higher doses of CSCs may provide superior reparative ability; however, it is unknown if doses >1 million cells are safe. To address this issue, we examined the effects of 20 million hCSCs in pigs.

Methods

Right atrial appendage samples were obtained from patients undergoing cardiac surgery. The tissue was processed by an established protocol with eventual immunomagnetic sorting to obtain in vitro expanded hCSCs. A cumulative dose of 20 million cells was given intracoronarily to pigs without stop flow. Safety was assessed by measurement of serial biomarkers (cardiac: troponin I and CK-MB, renal: creatinine and BUN, and hepatic: AST, ALT, and alkaline phosphatase) and echocardiography pre- and post-infusion. hCSC retention 30 days after infusion was quantified by PCR for human genomic DNA. All personnel were blinded as to group assignment.

Results

Compared with vehicle-treated controls (n=5), pigs that received 20 million hCSCs (n=9) showed no significant change in cardiac function or end organ damage (assessed by organ specific biomarkers) that could be attributed to hCSCs (P>0.05 in all cases). No hCSCs could be detected in left ventricular samples 30 days after infusion.

Conclusions

Intracoronary infusion of 20 million c-kit positive hCSCs in pigs (equivalent to ~40 million hCSCs in humans) does not cause acute cardiac injury, impairment of cardiac function, or liver and renal injury. These results have immediate translational value and lay the groundwork for using doses of CSCs >1 million in future clinical trials. Further studies are needed to ascertain whether administration of >1 million hCSCs is associated with greater efficacy in patients with ischemic cardiomyopathy.  相似文献   
9.
The highly reactive electrophile, methylglyoxal (MG), a break down product of carbohydrates, is a major environmental mutagen having potential genotoxic effects. Previous studies have suggested the reaction of MG with free amino groups of proteins forming advanced glycation end products (AGEs). This results in the generation of free radicals which play an important role in pathophysiology of aging and diabetic complications. MG also reacts with free amino group of nucleic acids resulting in the formation of DNA–AGEs. While the formation of nucleoside AGEs has been demonstrated previously, no extensive studies have been performed to assess the genotoxicity and immunogenicity of DNA–AGEs. In this study we report both the genotoxicity and immunogenicity of AGEs formed by MG–Lys–Cu2+ system. Genotoxicity of the experimentally generated AGEs was confirmed by comet-assay. Spectroscopical analysis and melting temperature studies suggest structural perturbations in the DNA as a result of modification. This might be due to generation of single-stranded regions and destabilization of hydrogen bonds. Immunogenicity of native and MG–Lys–Cu2+-DNA was probed in female rabbits. The modified DNA was highly immunogenic eliciting high titre immunogen specific antibodies, while the unmodified form was almost non-immunogenic. The results show structural perturbations in MG–Lys–Cu2+-DNA generating new epitopes that render the molecule immunogenic.  相似文献   
10.
In the present work, a simple and high sensitive method based on hollow fiber liquid phase microextraction (HF-LPME) was developed followed by high performance liquid chromatography (HPLC) for determination of ultra-trace amounts of Se(IV) after derivatization in biological and natural water samples. Se(IV) was complexed with o-phenylenediamine to form piazselenol. The formed piazselenol was extracted into 20 μL of 1-octanol located in the lumen of a hollow fiber and the solution was injected into HPLC-UV for analysis. Using the Taguchi method, an orthogonal array design (OAD), OA16 (45) was employed to optimize the HF-LPME of piazselenol. The effect of five experimental factors (each factor at four levels) including the volume of the organic phase, extraction time, pH of the solution, stirring rate and ionic strength on the extraction efficiency of piazselenol was studied and optimized. The maximum extraction efficiency of piazselenol was obtained at 20 μL of 1-octanol as the extracting solvent, 30 min extraction time, pH 2, stirring rate of 500 rpm and 30% (w/v) NaCl. Under the optimum conditions, preconcentration factors up to 130 were achieved and the relative standard deviation (%RSD) of the method was <3.7% for different concentrations of Se(IV). The calibration curves were obtained in the ranges of 0.2–100 and 0.05–10 μg L?1 for the 11 and 50 mL of the sample volumes with reasonable linearity, respectively (r2 > 0.995). The limits of detection (LOD) were 0.1 and 0.02 μg L?1 for the 11 and 50 mL sample volumes, respectively (S/N = 3). Finally, the applicability of the proposed method was evaluated by the extraction and determination of Se(IV) in the plasma, urine and water samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号