首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   4篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
  1968年   2篇
  1967年   2篇
排序方式: 共有47条查询结果,搜索用时 18 毫秒
31.
Mochimaru M  Masukawa H  Takaichi S 《FEBS letters》2005,579(27):6111-6114
Two beta-carotene ketolases, CrtW and CrtO, are widely distributed in bacteria, although they show no significant sequence homology with each other. The cyanobacterium Anabaena sp. PCC 7120 was found to have two homologous genes. In the crtW deleted mutant, myxol 2'-fucoside was present, but ketomyxol 2'-fucoside was absent. In the crtO deleted mutant, beta-carotene was accumulated, and the amount of echinenone was decreased. Therefore, CrtW catalyzed myxol 2'-fucoside to ketomyxol 2'-fucoside, and CrtO catalyzed beta-carotene to echinenone. This cyanobacterium was the first species found to have both enzymes, which functioned in two distinct biosynthetic pathways.  相似文献   
32.
Cells at the elongation zone expand longitudinally to form the straight central axis of plant stems, hypocotyls and roots, and transverse cortical microtubule arrays are generally recognized to be important for the anisotropic growth. Recessive mutations in either of two Arabidopsis thaliana SPIRAL loci, SPR1 or SPR2, reduce anisotropic growth of endodermal and cortical cells in roots and etiolated hypocotyls, and induce right-handed helical growth in epidermal cell files of these organs. spr2 mutants additionally show right-handed twisting in petioles and petals. The spr1spr2 double mutant's phenotype is synergistic, suggesting that SPR1 and SPR2 act on a similar process but in separate pathways in controlling cell elongation. Interestingly, addition of a low dose of either of the microtubule-interacting drugs propyzamide or taxol in the agar medium was found to reduce anisotropic expansion of endodermal and cortical cells at the root elongation zone of wild-type seedlings, resulting in left-handed helical growth. In both spiral mutants, exogenous application of these drugs reverted the direction of the epidermal helix, in a dose-dependent manner, from right-handed to left-handed; propyzamide at 1 microM and taxol at 0.2-0.3 microM effectively suppressed the cell elongation defects of spiral seedlings. The spr1 phenotype is more pronounced at low temperatures and is nearly suppressed at high temperatures. Cortical microtubules in elongating epidermal cells of spr1 roots were arranged in left-handed helical arrays, whereas the highly isotropic cortical cells of etiolated spr1 hypocotyls showed microtubule arrays with irregular orientations. We propose that a microtubule-dependent process and SPR1/SPR2 act antagonistically to control directional cell elongation by preventing elongating cells from potential twisting. Our model may have implicit bearing on the circumnutation mechanism.  相似文献   
33.
T Masukawa  M Sai  Y Tochino 《Life sciences》1989,44(5):311-318
The effect of various reduced glutathione (GSH) depletors on the survival time under normobaric and hypobaric hypoxia was examined in mice. The survival time was markedly prolonged in mice treated with glutathione S-transferase substrate, 2-cyclohexene-1-one (50-100 mg/kg, ip) and phorone (100-250 mg/kg, ip). The anti-hypoxic effect lasted for at least 3 hr and the maximum effect was found 0.5 hr after injection. Further, both compounds significantly elevated blood glucose levels 0.5-1 hr after treatment. The extent of the elevated blood glucose was nearly comparable to that of the mice treated with glucose (1-2 g/kg, ip), which was found to possess an anti-hypoxic effect. However, a GSH synthesis inhibitor, buthionine sulfoximine, could cause neither a prolongation of survival time of hypoxic mice nor an elevation of blood glucose. Moreover, unlike the depletion of hepatic GSH, brain GSH was markedly decreased by 2-cyclohexene-1-one and phorone, but not by buthionine sulfoximine. These findings suggest that the elevated blood glucose may involve in one of the mechanisms of the anti-hypoxic effect of 2-cyclohexene-1-one and phorone. A relationship between the anti-hypoxic effect and the depletion of brain GSH was also discussed.  相似文献   
34.
Selenite, selenate and selenocystine catalyzed the reduction of methemoglobin (metHb) by glutathione (GSH), while selenomethionine did not. Maximal reduction of metHb was observed with 10?5 M selenite and 2 mM GSH, at pH 7.4. Selenite also catalyzed the reduction of metHb with cysteine or 2-mercaptoethylamine in place of GSH. Heavy metals and arsenite completely prevented the effect of selenite. These findings suggest that certain seleno-compounds catalyze the reduction of metHb by thiol compounds.  相似文献   
35.
36.
37.
In the case of nitrogenase-based photobiological hydrogen production systems of cyanobacteria, the inactivation of uptake hydrogenase (Hup) leads to significant increases in hydrogen production activity. However, the high-level-activity stage of the Hup mutants lasts only a few tens of hours under air, a circumstance which seems to be caused by sufficient amounts of combined nitrogen supplied by active nitrogenase. The catalytic FeMo cofactor of nitrogenase binds homocitrate, which is required for efficient nitrogen fixation. It was reported previously that the nitrogenase from the homocitrate synthase gene (nifV) disruption mutant of Klebsiella pneumoniae shows decreased nitrogen fixation activity and increased hydrogen production activity under N2. The cyanobacterium Nostoc sp. strain PCC 7120 has two homocitrate synthase genes, nifV1 and nifV2, and with the ΔhupL variant of Nostoc sp. strain PCC 7120 as the parental strain, we have constructed two single mutants, the ΔhupL ΔnifV1 strain (with the hupL and nifV1 genes disrupted) and the ΔhupL ΔnifV2 strain, and a double mutant, the ΔhupL ΔnifV1 ΔnifV2 strain. Diazotrophic growth rates of the two nifV single mutants and the double mutant were decreased moderately and severely, respectively, compared with the rates of the parent ΔhupL strain. The hydrogen production activity of the ΔhupL ΔnifV1 mutant was sustained at higher levels than the activity of the parent ΔhupL strain after about 2 days of combined-nitrogen step down, and the activity in the culture of the former became higher than that in the culture of the latter. The presence of N2 gas inhibited hydrogen production in the ΔhupL ΔnifV1 ΔnifV2 mutant less strongly than in the parent ΔhupL strain and the ΔhupL ΔnifV1 and ΔhupL ΔnifV2 mutants. The alteration of homocitrate synthase activity can be a useful strategy for improving sustained photobiological hydrogen production in cyanobacteria.  相似文献   
38.
T Masukawa  M Sai  Y Tochino 《Life sciences》1989,44(6):417-424
To search for a technique to deplete reduced glutathione (GSH) in brain, the influence of various types of compounds on brain GSH levels was investigated in mice. Of the compounds tested, cyclohexene-1-one, cycloheptene-1-one and diethyl maleate were shown to be potent GSH depletors in brain as well as in liver. The depletion of cerebral GSH ranged about 40-60% of control levels at 1 and 3 hr after intraperitoneal injection. Cyclohexene, cycloheptene, phorone, acetaminophen, and benzyl chloride caused mild depletion of cerebral GSH, but buthionine sulfoximine did not alter cerebral GSH levels. Further, intracerebroventricular injection of cyclohexene-1-one and cycloheptene-1-one caused depletion of brain GSH to about 60-80% of control levels at 1 hr after injection, and the effects persisted for at least 6 hr. Under these conditions, hepatic GSH was not altered. These results demonstrated that cyclohexene-1-one and cycloheptene-1-one can cause not only a marked depletion of brain GSH by systemic administration, but also depletion of cerebral GSH by intracerebroventricular injection by virtue of being water-soluble compounds. Thus, methods for depleting brain GSH employing both compounds are available for exploring possible functions of cerebral GSH in in vivo systems.  相似文献   
39.
Sato S  Masukawa H  Sato T 《Carbohydrate research》2006,341(16):2731-2736
1-Deoxy-1,1-bis(3-indolyl)alditols were synthesized by reacting 2.5equiv of indole with 1equiv of the following seven monosaccharides (D-galactose, D-mannose, D-allose, 2-deoxy-D-arabinohexose (2-deoxy-D-glucose), D-arabinose, L-arabinose, D-xylose), two disaccharides (D-lactose, D-maltose), and a trisaccharide (D-maltotriose) in 1:1 EtOH-H(2)O at room temperature, or at 40 or 50 degrees C, in the presence of 5 mol% scandium(III) trifluoromethanesulfonate [Sc(OTf)(3)], in a one-pot reaction, in 36-95% yields.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号