首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2644篇
  免费   158篇
  国内免费   2篇
  2022年   7篇
  2021年   29篇
  2020年   11篇
  2019年   18篇
  2018年   18篇
  2017年   27篇
  2016年   53篇
  2015年   70篇
  2014年   93篇
  2013年   259篇
  2012年   142篇
  2011年   159篇
  2010年   105篇
  2009年   106篇
  2008年   158篇
  2007年   175篇
  2006年   175篇
  2005年   184篇
  2004年   180篇
  2003年   156篇
  2002年   166篇
  2001年   27篇
  2000年   46篇
  1999年   49篇
  1998年   22篇
  1997年   29篇
  1996年   14篇
  1995年   19篇
  1994年   14篇
  1993年   17篇
  1992年   19篇
  1991年   23篇
  1990年   20篇
  1989年   26篇
  1988年   13篇
  1987年   14篇
  1986年   14篇
  1985年   9篇
  1984年   14篇
  1983年   17篇
  1982年   20篇
  1981年   10篇
  1980年   10篇
  1979年   10篇
  1978年   12篇
  1977年   9篇
  1976年   7篇
  1975年   6篇
  1973年   4篇
  1972年   4篇
排序方式: 共有2804条查询结果,搜索用时 15 毫秒
111.
Besides the open circuit voltage (VOC) deficit, fill factor (FF) is the second most significant parameter deficit for earth‐abundant kesterite solar cell technology. Here, various pathways for FF loss are discussed, with focus on the series resistance issue and its various contributing factors. Electrical and physical characterizations of the full range of bandgap (Eg = 1.0–1.5 eV) Cu2ZnSn(SxSe1?x)4 (CZTSSe) devices, as well as bare and exfoliated films with various S/(S + Se) ratios, are performed. High intensity Suns‐VOC measurement indicates a nonohmic junction developing in high bandgap CZTSSe. Grazing incidence X‐ray diffraction, Raman mapping, field emission scanning electron microscopy, and X‐ray photoelectron spectroscopy indicate the formation of Sn(S,Se)2, Mo(S,Se)2, and Zn(S,Se) at the high bandgap CZTSSe/Mo interface, contributing to the increased series resistance (RS) and nonohmic back contact characteristics. This study offers some clues as to why the record‐CZTSSe solar cells occur within a bandgap range centered around 1.15 eV and offers some direction for further optimization.  相似文献   
112.
PurposeTo apply M-CHARTS for quantitative measurements of metamorphopsia in eyes with acute branch retinal vein occlusion (BRVO) and to elucidate the pathomorphology that causes metamorphopsia.MethodsThis prospective study consisted of 42 consecutive patients (42 eyes) with acute BRVO. Both at baseline and one month after treatment with ranibizumab, metamorphopsia was measured with M-CHARTS, and the retinal morphological changes were examined with optical coherence tomography.ResultsAt baseline, metamorphopsia was detected in the vertical and/or horizontal directions in 29 (69.0%) eyes; the mean vertical and horizontal scores were 0.59 ± 0.57 and 0.52 ± 0.67, respectively. The maximum inner retinal thickness showed no association with the M-CHARTS score, but the M-CHARTS score was correlated with the total foveal thickness (r = 0.43, p = 0.004), the height of serous retinal detachment (r = 0.31, p = 0.047), and the maximum outer retinal thickness (r = 0.36, p = 0.020). One month after treatment, both the inner and outer retinal thickness substantially decreased. However, metamorphopsia persisted in 26 (89.7%) of 29 eyes. The posttreatment M-CHARTS score was not correlated with any posttreatment morphological parameters. However, the posttreatment M-CHARTS score was weakly correlated with the baseline total foveal thickness (r = 0.35. p = 0.024) and closely correlated with the baseline M-CHARTS score (r = 0.78, p < 0.001).ConclusionsMetamorphopsia associated with acute BRVO was quantified using M-CHARTS. Initial microstructural changes in the outer retina from acute BRVO may primarily account for the metamorphopsia.  相似文献   
113.
114.
115.
Production of novel transgenic floricultural crops with altered petal properties requires transgenes that confer a useful trait and petal‐specific promoters. Several promoters have been shown to control transgenes in petals. However, all suffer from inherent drawbacks such as low petal specificity and restricted activity during the flowering stage. In addition, the promoters were not examined for their ability to confer petal‐specific expression in a wide range of plant species. Here, we report the promoter of InMYB1 from Japanese morning glory as a novel petal‐specific promoter for molecular breeding of floricultural crops. First, we produced stable InMYB1_1kb::GUS transgenic Arabidopsis and Eustoma plants and characterized spatial and temporal expression patterns under the control of the InMYB1 promoter by histochemical β‐glucuronidase (GUS) staining. GUS staining patterns were observed only in petals. This result showed that the InMYB1 promoter functions as a petal‐specific promoter. Second, we transiently introduced the InMYB1_1 kb::GUS construct into Eustoma, chrysanthemum, carnation, Japanese gentian, stock, rose, dendrobium and lily petals by particle bombardment. GUS staining spots were observed in Eustoma, chrysanthemum, carnation, Japanese gentian and stock. These results showed that the InMYB1 promoter functions in most dicots. Third, to show the InMYB1 promoter utility in molecular breeding, a MIXTA‐like gene function was suppressed or enhanced under the control of InMYB1 promoter in Arabidopsis. The transgenic plant showed a conspicuous morphological change only in the form of wrinkled petals. Based on these results, the InMYB1 promoter can be used as a petal‐specific promoter in molecular breeding of floricultural crops.  相似文献   
116.

Introduction

The adenomatous polyposis coli (APC) gene is a tumor suppressor gene that is inactivated in the initiation of colorectal neoplasia. Apc Min/+ mice, which possess a heterozygous APC mutation, develop numerous adenomatous polyps, which are similar to those observed in familial adenomatous polyposis (FAP) in humans. However, unlike FAP patients, Apc Min/+ mice predominantly develop adenomatous polyps in the small intestine. The metabolic changes associated with the development of polyps in the small and large intestine remain to be investigated.

Objectives

The objective of this study was to elucidate the metabolic changes associated with intestinal polyp formation.

Methods

We compared the metabolite levels of pairs of polyp and non-polyp tissues obtained from the small intestines (n = 12) or large intestines (n = 7) of Apc Min/+ mice. To do this, we analyzed the tissue samples using two methods, liquid chromatography-tandem mass spectrometry (1) with a pentafluorophenylpropyl column for cation analysis, and (2) with a C18 reversed phase column coupled to an ion-pair reagent for anion analysis.

Results

Pathway mapping of the metabolites whose levels were significantly altered revealed that the polyp tissue of the small intestine contained significantly higher levels of intermediates involved in glycolysis, the pentose phosphate pathway, nucleotide metabolism, or glutathione biosynthesis than in the equivalent non-polyp tissue. In addition, significantly higher levels of methionine cycle intermediates were detected in the polyp tissues of both the large and small intestines. Organ-dependent (small vs. large intestine) differences were also detected in the levels of most amino acids and urea cycle intermediates.

Conclusion

Our results indicate that various metabolic changes are associated with polyp development, and understanding these alterations could make it possible to evaluate the treatment response of colorectal cancer earlier.
  相似文献   
117.
118.
The novel trichothecene 12-deoxytrichodermin (3) was isolated from the fungus Trichoderma sp. 1212-03, and included with other known natural trichothecenes in a structure-activity relationship investigation against a human colon cancer cell line (COLO201) and filamentous fungus Cochliobolus miyabeanus. This revealed that the 12-epoxide functionality is critical for the cytotoxicity of simple trichothecenes trichodermin (4) and deoxynivalenol (2), while not critical for the cytotoxicity of roridin J (6) and epiisororidin E (8). In contrast, 12-epoxide is essential for the antifungal activity.  相似文献   
119.
Thrombomodulin is a clock-controlled gene in vascular endothelial cells   总被引:1,自引:0,他引:1  
Cardiovascular diseases are closely related to circadian rhythm, which is under the control of an internal biological clock mechanism. Although a biological clock exists not only in the hypothalamus but also in each peripheral tissue, the biological relevance of the peripheral clock remains to be elucidated. In this study we searched for clock-controlled genes in vascular endothelial cells using microarray technology. The expression of a total of 229 genes was up-regulated by CLOCK/BMAL2. Among the genes that we identified, we examined the thrombomodulin (TM) gene further, because TM is an integral membrane glycoprotein that is expressed primarily in vascular endothelial cells and plays a major role in the regulation of intravascular coagulation. TM mRNA and protein expression showed a clear circadian oscillation in the mouse lung and heart. Reporter analyses, gel shift assays, and chromatin immunoprecipitation analyses using the TM promoter revealed that a heterodimer of CLOCK and BMAL2 binds directly to the E-box of the TM promoter, resulting in TM promoter transactivation. Indeed, the oscillation of TM gene expression was abolished in clock mutant mice, suggesting that TM expression is regulated by the clock gene in vivo. Finally, the phase of circadian oscillation of TM mRNA expression was altered by temporal feeding restriction, suggesting TM gene expression is regulated by the peripheral clock system. In conclusion, these data suggest that the peripheral clock in vascular endothelial cells regulates TM gene expression and that the oscillation of TM expression may contribute to the circadian variation of cardiovascular events.  相似文献   
120.
The potential of quantitative proteomic analysis to predict carcinogenicity of chemical compounds was investigated. Using 2D-DIGE, we analyzed the effects of 63 chemical compounds on protein expression in the rat liver after 28 daily doses. Types of carcinogens were categorized depending on the species and organ specificity. The carcinogen characteristic proteins for each classification were identified by Welch's t value. For evaluation of the predictive concordance we used support vector machines. The rat hepatic carcinogen-specific classification gave higher concordance than the other classification. The generalization performance was measured by leave-one-out cross-validation. For genotoxic and non-genotoxic compounds, a concordance of 79.3 and 76.5%, respectively, was obtained by the top 30 ranked proteins with Welch's t value. Furthermore, we found that the increase of the expression level of the stress response proteins as the common feature of poorly predicted chemical compounds in the leave-20%-out cross-validation. Quantitative proteomics could be promising technique for developing biomarker panels that can be used for carcinogenicity prediction. The list of proteins identified in this study and the zoomed gel images of the top ranked proteins in statistic analysis are provided in Supplementary Data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号