首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43738篇
  免费   4405篇
  国内免费   11篇
  2023年   167篇
  2021年   688篇
  2020年   507篇
  2019年   594篇
  2018年   778篇
  2017年   694篇
  2016年   1151篇
  2015年   1897篇
  2014年   2064篇
  2013年   2572篇
  2012年   3189篇
  2011年   3055篇
  2010年   2010篇
  2009年   1716篇
  2008年   2438篇
  2007年   2429篇
  2006年   2310篇
  2005年   2050篇
  2004年   2036篇
  2003年   1833篇
  2002年   1768篇
  2001年   770篇
  2000年   724篇
  1999年   737篇
  1998年   451篇
  1997年   371篇
  1996年   325篇
  1995年   370篇
  1994年   332篇
  1993年   321篇
  1992年   475篇
  1991年   393篇
  1990年   398篇
  1989年   409篇
  1988年   395篇
  1987年   378篇
  1986年   304篇
  1985年   347篇
  1984年   347篇
  1983年   299篇
  1982年   289篇
  1981年   261篇
  1980年   230篇
  1979年   248篇
  1978年   218篇
  1977年   224篇
  1976年   212篇
  1975年   224篇
  1974年   187篇
  1973年   189篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
41.
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.  相似文献   
42.
The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation‐resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation – an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life‐history patterns – suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm‐producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency‐dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex vegetative communities presented competitive conditions that made large spore size advantageous. Second, heterospory is analogous in many ways to anisogamy. Indeed, heterospory is a kind of re‐invention of anisogamy within the context of a sporophyte‐dominant land plant life cycle. The evolution of anisogamy has been the subject of important theoretical and empirical investigation. Recent work in this area suggests that mate‐encounter dynamics set up selective forces that can drive the evolution of anisogamy. We suggest that similar dispersal and mating dynamics could have underlain spore size differentiation. The two approaches offer predictions that are consistent with currently available data but could be tested far more thoroughly. We hope to re‐establish attention on this neglected aspect of plant evolutionary biology and suggest some paths for empirical investigation.  相似文献   
43.
The experimental study of the relationship between biodiversity and ecosystem function has mainly addressed the effect of species and number of functional groups. In theory, this approach has mainly focused on how extinction affects function, whereas dispersal limitation of ecosystem function has been rarely discussed. A handful of seed introduction experiments, as well as numerous observations of the effects of long‐distance dispersal of alien species, indicate that ecosystem function may be strongly determined by dispersal limitation at the local, regional and/or global scales. We suggest that it is time to replace biodiversity manipulation experiments, based on random draw of species, with those addressing realistic scenarios of either extinction or dispersal. Experiments disentangling the dispersal limitation of ecosystem function should have to take into account the probability of arrival. The latter is defined as the probability that a propagule of a particular species will arrive at a particular community. Arrival probability depends on the dispersal ability and the number of propagules of a species, the distance a species needs to travel, and the permeability of the matrix landscape. Current databases, in particular those in northwestern and central Europe now enable robust estimation of arrival probability in plant communities. We suggest a general hypothesis claiming that dispersal limitation according to arrival probability will have ecosystem‐level effects different from those arising due to random arrival. This hypothesis may be rendered more region‐, landscape‐ or ecosystem‐specific by estimating arrival probabilities for different background conditions.  相似文献   
44.
Incubation of 50 mM d -glucose with aspartate aminotransferase (AST, EC 2.6.1.1) preparations (purified pig heart enzyme or a rat liver 20,000 × g supernatant) at 25°C had no effect on enzyme activity. 50 mM d -fructose or d -ribose gradually inhibited pig heart AST under the same conditions to zero activity after 14 days. 50 mM dl -glyceraldehyde decreased enzyme activity to zero after 6 days of incubation. The inhibition of pig heart AST by 50 mM d -fructose or d -ribose was marked even at a temperature of 4°C but it was less pronounced than at 25°C. There was no effect of 0.5 mM 2-oxoglutarate on AST activity during incubation, while the presence of 25 mM l -aspartate decreased it rapidly. 0.5 mM 2-oxoglutarate partly prevented inhibition of AST by d -ribose or d -fructose, while an analogous experiment with 25 mM aspartate resulted in a rapid decline similar to that in the absence of sugars.  相似文献   
45.
Myocardial contractile dysfunction in sepsis is associated with the increased morbidity and mortality. Although the underlying mechanisms of the cardiac depression have not been fully elucidated, an exaggerated inflammatory response is believed to be responsible. Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome is an intracellular platform that is involved in the maturation and release of interleukin (IL)-1β. The aim of the present study is to evaluate whether sepsis activates NLRP3 inflammasome/caspase-1/IL-1β pathway in cardiac fibroblasts (CFs) and whether this cytokine can subsequently impact the function of cardiomyocytes (cardiac fibroblast-myocyte cross-talk). We show that treatment of CFs with lipopolysaccharide (LPS) induces upregulation of NLRP3, activation of caspase-1, as well as the maturation (activation) and release of IL-1β. In addition, the genetic (small interfering ribonucleic acid [siRNA]) and pharmacological (glyburide) inhibition of the NLRP3 inflammasome in CFs can block this signaling pathway. Furthermore, the inhibition of the NLRP3 inflammasome in cardiac fibroblasts ameliorated the ability of LPS-chalenged CFs to impact cardiomyocyte function as assessed by intracellular cyclic adenosine monophosphate (cAMP) responses in cardiomyocytes. Salient features of this the NLP3 inflammasome/ caspase-1 pathway were confirmed in in vivo models of endotoxemia/sepsis. We found that inhibition of the NLRP3 inflammasome attenuated myocardial dysfunction in mice with LPS and increased the survival rate in mice with feces-induced peritonitis. Our results indicate that the activation of the NLRP3 inflammasome in cardiac fibroblasts is pivotal in the induction of myocardial dysfunction in sepsis.  相似文献   
46.
47.
Questions: Is change in cover of dominant species driving the velocity of succession or is it species turnover (1)? Is the length of the time‐step chosen in sampling affecting our recognition of the long‐term rate of change (2)1 Location: 74 permanent plots located in the Swiss National Park, SE Switzerland, ca. 1900 m a.s.l. Methods: We superimpose several time‐series from permanent plots to one single series solely based on compositional dissimilarity. As shown earlier (Wildi & Schütz 2000) this results in a synthetic series covering about 400 to 650 yr length. Continuous power transformation of cover‐percentage scores is used to test if the dominance or the presence‐absence of species is governing secondary succession from pasture to forest. The effect of time step length is tested by sub‐samples of the time series. Results: Altering the weight of presence‐absence versus dominance of species affects the emerging time frame, while altering time step length is uncritical. Where species turnover is fast, different performance scales yield similar results. When cover change in dominant species prevails, the solutions vary considerably. Ordinations reveal that the synthetic time series seek for shortest paths of the temporal pattern whereas in the real system longer lasting alternatives exist. Conclusions: Superimposing time series differs from the classical space‐for‐time substitution approach. It is a computation‐based method to investigate temporal patterns of hundreds of years fitting between direct monitoring (usually limited to decades) and the analysis of proxy‐data (for time spans of thousands of years and more).  相似文献   
48.
In this work we apply a mathematical model of photosynthesis to quantify the potential for photosynthetic life in the very Early Archean oceans. We assume the presence of oceanic blockers of ultraviolet radiation, specifically ferrous ions. For this scenario, our results suggest a potential for photosynthetic life greater than or similar to that in later eras/eons, such as the Late Archean and the current Phanerozoic eon.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号