首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   491篇
  免费   40篇
  2023年   1篇
  2022年   3篇
  2021年   12篇
  2020年   4篇
  2019年   2篇
  2018年   7篇
  2017年   3篇
  2016年   9篇
  2015年   13篇
  2014年   21篇
  2013年   40篇
  2012年   53篇
  2011年   51篇
  2010年   22篇
  2009年   28篇
  2008年   31篇
  2007年   35篇
  2006年   38篇
  2005年   22篇
  2004年   38篇
  2003年   19篇
  2002年   16篇
  2001年   1篇
  2000年   4篇
  1999年   5篇
  1998年   11篇
  1997年   11篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   6篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1986年   4篇
  1983年   1篇
  1982年   3篇
  1977年   1篇
排序方式: 共有531条查询结果,搜索用时 15 毫秒
91.
92.
93.
94.

Background

Hepatocellular carcinoma (HCC) is characterized by late detection and fast progression, and it is believed that epigenetic disruption may be the cause of its molecular and clinicopathological heterogeneity. A better understanding of the global deregulation of methylation states and how they correlate with disease progression will aid in the design of strategies for earlier detection and better therapeutic decisions.

Methods and Findings

We characterized the changes in promoter methylation in a series of 30 HCC tumors and their respective surrounding tissue and identified methylation signatures associated with major risk factors and clinical correlates. A wide panel of cancer-related gene promoters was analyzed using Illumina bead array technology, and CpG sites were then selected according to their ability to classify clinicopathological parameters. An independent series of HCC tumors and matched surrounding tissue was used for validation of the signatures. We were able to develop and validate a signature of methylation in HCC. This signature distinguished HCC from surrounding tissue and from other tumor types, and was independent of risk factors. However, aberrant methylation of an independent subset of promoters was associated with tumor progression and etiological risk factors (HBV or HCV infection and alcohol consumption). Interestingly, distinct methylation of an independent panel of gene promoters was strongly correlated with survival after cancer therapy.

Conclusion

Our study shows that HCC tumors exhibit specific DNA methylation signatures associated with major risk factors and tumor progression stage, with potential clinical applications in diagnosis and prognosis.  相似文献   
95.
Many central metabolic processes require iron as a cofactor and take place in specific subcellular compartments such as the mitochondrion or the chloroplast. Proper iron allocation in the different organelles is thus critical to maintain cell function and integrity. To study the dynamics of iron distribution in plant cells, we have sought to identify the different intracellular iron pools by combining three complementary imaging approaches, histochemistry, micro particle-induced x-ray emission, and synchrotron radiation micro X-ray fluorescence. Pea (Pisum sativum) embryo was used as a model in this study because of its large cell size and high iron content. Histochemical staining with ferrocyanide and diaminobenzidine (Perls/diaminobenzidine) strongly labeled a unique structure in each cell, which co-labeled with the DNA fluorescent stain DAPI, thus corresponding to the nucleus. The unexpected presence of iron in the nucleus was confirmed by elemental imaging using micro particle-induced x-ray emission. X-ray fluorescence on cryo-sectioned embryos further established that, quantitatively, the iron concentration found in the nucleus was higher than in the expected iron-rich organelles such as plastids or vacuoles. Moreover, within the nucleus, iron was particularly accumulated in a subcompartment that was identified as the nucleolus as it was shown to transiently disassemble during cell division. Taken together, our data uncover an as yet unidentified although abundant iron pool in the cell, which is located in the nuclei of healthy, actively dividing plant tissues. This result paves the way for the discovery of a novel cellular function for iron related to nucleus/nucleolus-associated processes.  相似文献   
96.
The structure of the vegetative cell wall peptidoglycan of Clostridium difficile was determined by analysis of its constituent muropeptides with a combination of reverse-phase high pressure liquid chromatography separation of muropeptides, amino acid analysis, mass spectrometry and tandem mass spectrometry. The structures assigned to 36 muropeptides evidenced several original features in C. difficile vegetative cell peptidoglycan. First, it is characterized by a strikingly high level of N-acetylglucosamine deacetylation. In addition, the majority of dimers (around 75%) contains A(2)pm(3) → A(2)pm(3) (A(2)pm, 2,6-diaminopimelic acid) cross-links and only a minority of the more classical Ala(4) → A(2)pm(3) cross-links. Moreover, a significant amount of muropeptides contains a modified tetrapeptide stem ending in Gly instead of D-Ala(4). Two L,D-transpeptidases homologues encoding genes present in the genome of C. difficile 630 and named ldt(cd1) and ldt(cd2), were inactivated. The inactivation of either ldt(cd1) or ldt(cd2) significantly decreased the abundance of 3-3 cross-links, leading to a marked decrease of peptidoglycan reticulation and demonstrating that both ldt(cd1)-and ldt(cd2)-encoded proteins have a redundant L,D-transpeptidase activity. The contribution of 3-3 cross-links to peptidoglycan synthesis increased in the presence of ampicillin, indicating that this drug does not inhibit the L,D-transpeptidation pathway in C. difficile.  相似文献   
97.
Diffusion of entities inside biofilm triggers most mechanisms involved in biofilm-specific phenotypes. Using genetically engineered hydrophilic and hydrophobic cells of Lactococcus lactis yielding similar biofilm architectures, we demonstrated by fluorescence correlation spectroscopy that bacterial surface properties affect diffusion of nanoparticles through the biofilm matrix.  相似文献   
98.
While the participation of adipocytes is well known in tissue architecture, energy supply and endocrine processes, their implication during natural cancer history is just beginning to unfold. An extensive review of the literature concerning the impact of resident adipocytes on breast cancer development/progression was performed. This review provides in vitro and in vivo evidence that adipocytes located close to invasive cancer cells, referred to as cancer-associated adipocytes (CAAs), are essential for breast tumor development/progression. Their deleterious function is dependent, at least partly, on their crosstalk with invasive cancer cells. Indeed, this event leads to dramatic phenotypic and/or functional modifications of both cell types. Adipocytes exhibit delipidation and acquire a fibroblast-like shape. In parallel, cancer cell aggressiveness is exacerbated through increased migratory and invasive properties. Moreover, obesity is currently a sign of poor prognosis in human carcinomas. In this context, a high number of "obese" resident adipocytes might be predicted to be detrimental. Accordingly, there are some similarities between the molecular alterations observed in hypertrophied adipocytes and in CAAs. How adipocytes function to favor tumorigenesis at the molecular level remains largely unknown. Nevertheless, progress has been made recently and molecular clues are starting to emerge. Deciphering the cellular and molecular mechanisms behind the adipocyte-cancer cell heterotypic crosstalk is of great interest since it might provide new targets for improving diagnosis/prognosis and for the design of innovative therapeutic strategies. They might also improve our understanding of the relationship between obesity/metabolic disorders and cancer risk and/or poor patient outcome.  相似文献   
99.
Loss of TP53 function through gene mutation is a critical event in the development and progression of colorectal cancer (CRC). Here we examined 51 primary CRC tumors from Tunisia for mutations in TP53 exons 4–9 using PCR-direct sequencing. TP53 status and mutation site/type were than correlated with nuclear protein accumulation, familial and clinicopathologic variables and data on KRAS mutations and microsatellite instability (MSI-H). The TP53 mutation analysis was possible in the tumor of 47 patients and a deleterious somatic mutation has been detected in 59.6 % of the patients (28/47) including 20 (71.4 %) missense mutations, 7 nonsense mutations (25 %) and 1 (3.6 %) frameshift mutation. 89.3 % (25/28) of the detected mutations were in exons 5–8, whereas 10.7 % (3/28) were in exon 4. Among the 27 non frameshift mutations, 89 % (24/27) were transitions and 11 % (3/27) were transversions. 64.3 % (18/27) of the altered amino acids corresponded to arginine. 74 % (20/27) were G>C to A>T transitions, and more than half (14/27) occur at hotspots codons with CpG sites. TP53 mutations correlated closely with TP53 accumulation (p = 0.0090) and inversely with MSI phenotype (p = 0.0658). A KRAS somatic mutation was identified in 25 % (7/28) of the TP53 mutated tumors. All these mutations were G>A transitions in codon 12 and all the tumors with combined alterations but one were distally located and MSS. In conclusion, frequency and types of TP53 mutations and correlations with TP53 protein accumulation, and MSI were as reported for non-Tunisian patients. However, no significant associations have been detected between TP53 mutations and clinicopathological data in Tunisian patients as previously reported.  相似文献   
100.
Macroscopic charred remains of Spinacia oleracea L. (Amaranthaceae) have been found in the Pyrenean village of Montaillou, France, in several contexts of a house dated to the end 12th–mid 13th century a.d. This is the first archaeobotanical record of this vegetable in France and the earliest European archaeobotanical material so far found. The paper presents the morphological criteria used for identifying the charred remains of the species. After a review of archaeobotanical finds in Europe, hypotheses on the economic status of this vegetable, which is unknown as a wild plant in Europe, are discussed with reference to medieval written and illuminated sources and to archaeological deposits. It appears that Spinacia was first introduced into France from Moorish Spain where it was cultivated at least since the 11th century. The French evidence of Spinacia thus represents a milestone in the history and geographic diffusion of this vegetable into temperate Europe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号