首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1633篇
  免费   82篇
  国内免费   1篇
  2023年   13篇
  2022年   20篇
  2021年   49篇
  2020年   29篇
  2019年   34篇
  2018年   48篇
  2017年   38篇
  2016年   59篇
  2015年   77篇
  2014年   93篇
  2013年   136篇
  2012年   153篇
  2011年   147篇
  2010年   107篇
  2009年   78篇
  2008年   88篇
  2007年   92篇
  2006年   82篇
  2005年   59篇
  2004年   46篇
  2003年   42篇
  2002年   34篇
  2001年   19篇
  2000年   12篇
  1999年   16篇
  1998年   8篇
  1997年   5篇
  1996年   5篇
  1995年   8篇
  1994年   4篇
  1993年   5篇
  1992年   10篇
  1991年   3篇
  1990年   9篇
  1989年   4篇
  1988年   6篇
  1987年   11篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   6篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1975年   3篇
  1974年   5篇
  1967年   3篇
  1966年   3篇
排序方式: 共有1716条查询结果,搜索用时 15 毫秒
101.
102.
103.
Thrombocytopenia in methotrexate (MTX)-treated cancer and rheumatoid arthritis (RA) patients connotes the interference of MTX with platelets. Hence, it seemed appealing to appraise the effect of MTX on platelets. Thereby, the mechanism of action of MTX on platelets was dissected. MTX (10 μM) induced activation of pro-apoptotic proteins Bid, Bax and Bad through JNK phosphorylation leading to ΔΨm dissipation, cytochrome c release and caspase activation, culminating in apoptosis. The use of specific inhibitor for JNK abrogates the MTX-induced activation of pro-apoptotic proteins and downstream events confirming JNK phosphorylation by MTX as a key event. We also demonstrate that platelet mitochondria as prime sources of ROS which plays a central role in MTX-induced apoptosis. Further, MTX induces oxidative stress by altering the levels of ROS and glutathione cycle. In parallel, the clinically approved thiol antioxidant N-acetylcysteine (NAC) and its derivative N-acetylcysteine amide (NACA) proficiently alleviate MTX-induced platelet apoptosis and oxidative damage. These findings underpin the dearth of research on interference of therapeutic drugs with platelets, despite their importance in human health and disease. Therefore, the use of antioxidants as supplementary therapy seems to be a safe bet in pathologies associated with altered platelet functions.  相似文献   
104.

Background

Protease-Activated Receptor-2 (PAR-2), a G protein coupled receptor activated by serine proteases, is widely expressed in humans and is involved in inflammation. PAR-2 activation in the airways plays an important role in the development of allergic airway inflammation. PAR-2 expression is known to be upregulated in the epithelium of asthmatic subjects, but its expression on immune and inflammatory cells in patients with asthma has not been studied.

Methods

We recruited 12 severe and 24 mild/moderate asthmatics from the University of Alberta Hospital Asthma Clinics and collected baseline demographic information, medication use and parameters of asthma severity. PAR-2 expression on blood inflammatory cells was analyzed by flow cytometry.

Results

Subjects with severe asthma had higher PAR-2 expression on CD14++CD16+ monocytes (intermediate monocytes) and also higher percentage of CD14++CD16+PAR-2+ monocytes (intermediate monocytes expressing PAR-2) in blood compared to subjects with mild/moderate asthma. Receiver operating characteristics (ROC) curve analysis showed that the percent of CD14++CD16+PAR-2+ in peripheral blood was able to discriminate between patients with severe and those with mild/moderate asthma with high sensitivity and specificity. In addition, among the whole populations, subjects with a history of asthma exacerbations over the last year had higher percent of CD14++CD16+ PAR-2+ cells in peripheral blood compared to subjects without exacerbations.

Conclusions

PAR-2 expression is increased on CD14++CD16+ monocytes in the peripheral blood of subjects with severe asthma and may be a biomarker of asthma severity. Our data suggest that PAR-2 -mediated activation of CD14++CD16+ monocytes may play a role in the pathogenesis of severe asthma.  相似文献   
105.
Protein delivery platforms are important tools in the development of novel protein therapeutics and biotechnologies. We have developed a new class of protein delivery agent based on sub-micrometer-sized Cry3Aa protein crystals that naturally form within the bacterium Bacillus thuringiensis. We demonstrate that fusion of the cry3Aa gene to that of various reporter proteins allows for the facile production of Cry3Aa fusion protein crystals for use in subsequent applications. These Cry3Aa fusion protein crystals are efficiently taken up and retained by macrophages and other cell lines in vitro, and can be delivered to mice in vivo via multiple modes of administration. Oral delivery of Cry3Aa fusion protein crystals to C57BL/6 mice leads to their uptake by MHC class II cells, including macrophages in the Peyer’s patches, supporting the notion that the Cry3Aa framework can be used to stabilize cargo protein against degradation for delivery to gastrointestinal lymphoid tissues.  相似文献   
106.
107.
Insulin-stimulated translocation of glucose transporter 4 (GLUT4) to cell membrane leading to glucose uptake is the rate-limiting step in diabetes. It is also a defined target of antidiabetic drug research. Existing GLUT4 translocation assays are based on time-consuming immunoassays and are hampered by assay variability and low sensitivity. We describe a real-time, visual, cell-based qualitative GLUT4 translocation assay using CHO-HIRc-myc-GLUT4eGFP cells that stably express myc- and eGFP-tagged GLUT4 in addition to human insulin receptor (HIRc). GLUT4 translocation is visualized by live cell imaging based on GFP fluorescence by employing a cooled charge-coupled device camera attached to a fluorescent microscope. This video imaging method and further quantitative analysis of GLUT4 on the cell membrane provide rapid and foolproof visual evidence that this method is suitable for screening GLUT4 translocation modulators.  相似文献   
108.

Background

IP3-mediated calcium mobilization from intracellular stores activates and translocates PKC-α from cytosol to membrane fraction in response to STa in COLO-205 cell line. The present study was undertaken to determine the involvement of cytoskeleton proteins in translocation of PKC-α to membrane from cytosol in the Escherichiacoli STa-mediated signaling cascade in a human colonic carcinoma cell line COLO-205.

Methods

Western blots and consequent densitometric analysis were used to assess time-dependent redistribution of cytoskeletal proteins. This redistribution was further confirmed by using confocal microscopy. Pharmacological reagents were applied to colonic carcinoma cells to disrupt the microfilaments (cytochalasin D) and microtubules (nocodazole).

Results

STa treatment in COLO-205 cells showed dynamic redistribution and an increase in actin content in the Triton-insoluble fraction, which corresponds to an increase in polymerization within 1 min. Moreover, pharmacological disruption of actin-based cytoskeleton greatly disturbed PKC-α translocation to the membrane.

Conclusions

These results suggested that the organization of actin cytoskeleton is rapidly rearranged following E. coli STa treatment and the integrity of the actin cytoskeleton played a crucial role in PKC-α movement in colonic cells. Depolymerization of tubulin had no effect on the ability of the kinase to be translocated to the membrane.

General significance

In the present study, we have shown for the first time that in colonic carcinoma cells, STa-mediated rapid changes of actin cytoskeleton arrangement might be involved in the translocation of PKC-α to membrane.  相似文献   
109.
Guava (Psidium guajava L.), an important fruit crop of several tropical and sub-tropical countries, is facing several agronomic and horticultural problems such as susceptibility to many pathogens, particularly guava wilting caused by Fusarium oxysporium psidii, low fruit growth, short shelf life of fruits, high seed content, and stress sensitivity. Conventional breeding techniques have limited scope in improvement of guava owing to long juvenile period, self incompatibility, and heterozygous nature. Conventional propagation methods, i.e., cutting, grafting or stool layering, for improvement of guava already exist, but the long juvenile period has made them time consuming and cumbersome. Several biotechnological approaches such as genetic transformation may be effective practical solutions for such problems and improvement of guava. The improvement of fruit trees through genetic transformation requires an efficient regeneration system. During the past 2–3 decades, different approaches have been made for in vitro propagation of guava. An overview on the in vitro regeneration of guava via organogenesis, somatic embryogenesis, and synthetic seeds is presented. Organogenesis in several different genotypes through various explant selection from mature tree and seedling plants has been achieved. Factors affecting somatic embryogenesis in guava have been reviewed. Production of synthetic seeds using embryogenic propagules, i.e., somatic embryos and non-embryogenic vegetative propagules, i.e., shoot tips and nodal segments have also been achieved. Development of synthetic seed in guava may be applicable for propagation, short-term storage, and germplasm exchange, and distribution. An initial attempt for genetic transformation has also been reported. The purpose of this review is to focus upon the current information on in vitro propagation and biotechnological advances made in guava.  相似文献   
110.
Aim of the present study was to evaluate in vitro toxicity and in vivo antibacterial, anti-inflammatory, antiulcer, and antioxidant activities of two organoselenium compounds, selenocystine (SeCys) and ebselen (Ebs). The study was conducted in experimentally induced ulcers in rodent model infected with Helicobacter pylori (H. pylori). In vitro toxicological studies on normal spleenic lymphocytes revealed that SeCys and Ebs were non-toxic to the cells even at 100 μM concentration. Antibacterial activity was observed at 500 μg/mL concentration of either of the compounds against H. pylori. In vivo studies after treatment with SeCys and Ebs (500 μg/kg/day) resulted in significant reduction in ROS production and inhibition of lipid peroxidation in gastric tissue. The antioxidant and anti-inflammatory activities of both the compounds were also confirmed by their ability to lower GSH reduction, to induce the expression of antioxidant genes such as GPx-4, and MnSOD and to suppress inflammatory genes namely COX-2, TNF-α and TGF-β. In addition, the immunomodulatory activity of both the compounds was evident by enhance of the CD4 levels and maintenance of the IgG, IL-6 and IL-10 levels. Persistent treatment (500 μg/kg, for 28 days) with both the compounds showed considerable (p < 0.05) ulcer healing property supporting its role in gastro protection. In conclusion, the results of our study suggest that both SeCys and Ebs possess broad spectrum of activities without any potential toxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号