首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   535篇
  免费   17篇
  2020年   3篇
  2018年   6篇
  2017年   3篇
  2015年   9篇
  2014年   13篇
  2013年   7篇
  2012年   19篇
  2011年   17篇
  2010年   10篇
  2009年   11篇
  2008年   17篇
  2007年   16篇
  2006年   15篇
  2005年   10篇
  2004年   15篇
  2003年   15篇
  2002年   12篇
  2001年   6篇
  2000年   15篇
  1999年   7篇
  1997年   4篇
  1995年   3篇
  1992年   14篇
  1991年   14篇
  1990年   19篇
  1989年   13篇
  1988年   8篇
  1987年   11篇
  1986年   19篇
  1985年   13篇
  1984年   15篇
  1983年   13篇
  1981年   6篇
  1980年   8篇
  1979年   16篇
  1978年   11篇
  1977年   5篇
  1976年   9篇
  1975年   8篇
  1974年   14篇
  1973年   12篇
  1972年   16篇
  1971年   9篇
  1970年   7篇
  1969年   15篇
  1968年   8篇
  1967年   7篇
  1966年   5篇
  1965年   7篇
  1964年   2篇
排序方式: 共有552条查询结果,搜索用时 15 毫秒
1.
Long-chain acyl-CoA dehydrogenase (LCAD) is a mitochondrial fatty acid oxidation enzyme whose expression in humans is low or absent in organs known to utilize fatty acids for energy such as heart, muscle, and liver. This study demonstrates localization of LCAD to human alveolar type II pneumocytes, which synthesize and secrete pulmonary surfactant. The physiological role of LCAD and the fatty acid oxidation pathway in lung was subsequently studied using LCAD knock-out mice. Lung fatty acid oxidation was reduced in LCAD−/− mice. LCAD−/− mice demonstrated reduced pulmonary compliance, but histological examination of lung tissue revealed no obvious signs of inflammation or pathology. The changes in lung mechanics were found to be due to pulmonary surfactant dysfunction. Large aggregate surfactant isolated from LCAD−/− mouse lavage fluid had significantly reduced phospholipid content as well as alterations in the acyl chain composition of phosphatidylcholine and phosphatidylglycerol. LCAD−/− surfactant demonstrated functional abnormalities when subjected to dynamic compression-expansion cycling on a constrained drop surfactometer. Serum albumin, which has been shown to degrade and inactivate pulmonary surfactant, was significantly increased in LCAD−/− lavage fluid, suggesting increased epithelial permeability. Finally, we identified two cases of sudden unexplained infant death where no lung LCAD antigen was detectable. Both infants were homozygous for an amino acid changing polymorphism (K333Q). These findings for the first time identify the fatty acid oxidation pathway and LCAD in particular as factors contributing to the pathophysiology of pulmonary disease.  相似文献   
2.
Looking for an appropriate model of accelerated aging in vivo we investigated the content of endogenous products of lipid peroxidation (LP) in the rat brain after single or 4 day-lasting intramuscular injection of complex-bind iron (ferum Hausman, 50 mg/kg body weight) like promoter of LP. We found that the single administration of this iron complex fails to induce endogenous LP; after 4 day-application of iron we observed significant increase in content of primary (lipid peroxides) and final (fluorescent) products of LP. Iron-promoted activation of endogenous LP could be abolished by animal pretreatment with the natural antioxidant alpha-tocopherol. The calcium antagonist nifedipine didn't affect the content of endogenous LP products neither alone nor in combination with alpha-tocopherol.  相似文献   
3.
4.
The interaction of alpha-tocopherol with liposomes obtained from saturated and unsaturated phospholipids and the rate of its flip-flop were studied using fluorescent technique. It was found that the amount of alpha-tocopherol introduced into outer and inner monolayers remained unchanged for many hours. No migration from the outer to the inner monolayers and vice versa was observed. The effect did not depend on the fatty acid phospholipid composition. The results obtained are considered in view of the optimal conditions of membrane tissue saturation with liposome-incorporated tocopherol.  相似文献   
5.
Mechanisms underlying Ca2+ effects on lipid peroxidation (LPO) induced in liposomes (from egg yolk lecithin) and UFsomes (from linolenic acid, methyl linolenate) with the aid of O2- -system (Fe2+ + ascorbate) were studied. It was shown that stimulation of lipid peroxidation by low Ca2+ concentrations (10(-6)-10(-5) M) was due to its ability to release Fe2+-ions bound to negatively charged (phosphate, carboxylic) lipid groups (of licethin, linolenic acid), thus increasing the concentration of catalytically active Fe2+. The inhibitory effect of high Ca2+ concentrations was caused by its interaction with superoxide anion-radicals and was not observed in LPO-systems, independent of O2- generation (e. g. Fe2+ + cumol hydroperoxide).  相似文献   
6.
The efficacy of lipid peroxidation inhibition by the natural antioxidant alpha-tocopherol and 2,2,5,7,8-pentamethyl-6-hydroxy-chromane (PMC), a derivative without hydrocarbon tail, as well as by the synthetic antioxidant 4-methyl-2,6-diterbutyl phenol (BHT) and its phospholipid derivative was studied in the membranes of rat liver microsomes and mitochondria. The presence of hydrocarbon tail in the antioxidant molecule determines the decrease of antioxidant efficiency in biomembranes. PMC and BHT exert a destructive effect on biomembranes, leading to an increase in their permeability to ions. This evidence suggests that the presence of hydrocarbon tail in the molecules of natural antioxidants provides not only for a relatively high antioxidant efficiency but also for a structural stability of biomembranes.  相似文献   
7.
Changes in potential-dependent fluorescence were studied, using fluorescent probe di-S-C3-(5), in synaptosome suspensions exposed to phospholipase A2, alpha-tocopherol and its derivatives. Phospholipase A2 increased potential-dependent fluorescence, i.e. depolarization of synaptosome membranes. The damaging phospholipase A2 effect was prevented and/or abolished by alpha-tocopherol added to synaptosome suspensions before and after phospholipase A2. Alpha-tocopherol derivatives (2,2,5,7,8-pentamethyl-6-hydroxychromane and alpha-tocopheryl-acetate as well as 4-methyl-2,6-di-tert-butylphenol) failed to exert a protective effect on synaptosome membranes modified by phospholipase A2. It is suggested that alpha-tocopherol effect is determined by its interaction with fatty acids, with 6-hydroxy groups of chromanol nucleus and phytol chain being essential for the complex formation.  相似文献   
8.
The influence of 8 analogues of 3-hydroxypyridine upon the phosphodiesterase of rod outer segments of frog retinae has been investigated. It has been shown that the analogues of 3-hydroxypyridine inhibit the enzeme reversely and noncompetitively in case of hydrolysis towards the cAMP and cGMP. The natural analogues of 3-hydroxypyridine (pyridoxol, pyridoxale, pyridoxale-phosphate) do not exert the inhibiting effect. It is suggested that the inhibition of phosphodiesterase from rod outer segments of retinae is caused by the interaction of 3-hydroxypyridines with the hydrophobic microenvironment of the active site of the enzyme.  相似文献   
9.
The localization and mechanism of generation of active oxygen species in the enzymatic NADPH-dependent lipid peroxidation system in liver microsomes were studied. Using the spin-trapping method, the key role of active oxygen species in the initiation of NADPH-dependent enzymatic lipid peroxidation was confirmed. It was shown that active oxygen species are generated via consecutive one-electron reduction of the oxygen molecule by NADPH-cytochrome P-450 reductase.  相似文献   
10.
Hyperoxia brought about substantial accumulation of primary and end products of lipid peroxidation (LPO) and a significant lowering of alpha-tocopherol content in rat brain tissues. Preinjection of animals with synthetic and natural antioxidants (4-methyl-2,6-ditretbutylphenol and alpha-tocopherol) prevented LPO activation and decreased the frequency of epileptiform seizures induced by hyperoxia. Administration of a mixture of unsaturated fatty acids led to an opposite effect. The changes in the properties of serotonin receptors were found to be dependent on the hyperoxia-induced LPO. These changes were marked by the reduced specific binding of serotonin with neuronal membranes of the rat brain cortex. The data obtained allowed the conclusion about the key role played by LPO activation in toxic action of hyperbaric activation on the brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号