首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1227篇
  免费   58篇
  2023年   8篇
  2022年   9篇
  2021年   29篇
  2020年   15篇
  2019年   18篇
  2018年   40篇
  2017年   18篇
  2016年   37篇
  2015年   42篇
  2014年   53篇
  2013年   77篇
  2012年   92篇
  2011年   96篇
  2010年   58篇
  2009年   46篇
  2008年   62篇
  2007年   64篇
  2006年   52篇
  2005年   43篇
  2004年   47篇
  2003年   48篇
  2002年   41篇
  2001年   36篇
  2000年   21篇
  1999年   22篇
  1998年   8篇
  1997年   4篇
  1996年   8篇
  1995年   6篇
  1994年   7篇
  1993年   12篇
  1992年   14篇
  1991年   6篇
  1990年   9篇
  1989年   7篇
  1988年   14篇
  1987年   9篇
  1986年   9篇
  1985年   14篇
  1984年   7篇
  1982年   8篇
  1981年   6篇
  1980年   9篇
  1979年   10篇
  1978年   4篇
  1976年   5篇
  1973年   4篇
  1972年   7篇
  1970年   6篇
  1969年   6篇
排序方式: 共有1285条查询结果,搜索用时 31 毫秒
91.
92.
BackgroundHeart failure (HF) with preserved ejection fraction (HFpEF) is increasingly recognized as an important clinical entity. Preclinical studies have shown differences in the pathophysiology between HFpEF and HF with reduced ejection fraction (HFrEF). Therefore, we hypothesized that a systematic metabolomic analysis would reveal a novel metabolomic fingerprint of HFpEF that will help understand its pathophysiology and assist in establishing new biomarkers for its diagnosis.ConclusionsThe metabolomics approach employed in this study identified a unique metabolomic fingerprint of HFpEF that is distinct from that of HFrEF. This metabolomic fingerprint has been utilized to identify two novel panels of metabolites that can separate HFpEF patients from both non-HF controls and HFrEF patients.

Clinical Trial Registration

ClinicalTrials.gov NCT02052804  相似文献   
93.
Many diseases cause significant changes to the concentrations of small molecules (a.k.a. metabolites) that appear in a person’s biofluids, which means such diseases can often be readily detected from a person’s “metabolic profile"—i.e., the list of concentrations of those metabolites. This information can be extracted from a biofluids Nuclear Magnetic Resonance (NMR) spectrum. However, due to its complexity, NMR spectral profiling has remained manual, resulting in slow, expensive and error-prone procedures that have hindered clinical and industrial adoption of metabolomics via NMR. This paper presents a system, BAYESIL, which can quickly, accurately, and autonomously produce a person’s metabolic profile. Given a 1D 1H NMR spectrum of a complex biofluid (specifically serum or cerebrospinal fluid), BAYESIL can automatically determine the metabolic profile. This requires first performing several spectral processing steps, then matching the resulting spectrum against a reference compound library, which contains the “signatures” of each relevant metabolite. BAYESIL views spectral matching as an inference problem within a probabilistic graphical model that rapidly approximates the most probable metabolic profile. Our extensive studies on a diverse set of complex mixtures including real biological samples (serum and CSF), defined mixtures and realistic computer generated spectra; involving > 50 compounds, show that BAYESIL can autonomously find the concentration of NMR-detectable metabolites accurately (~ 90% correct identification and ~ 10% quantification error), in less than 5 minutes on a single CPU. These results demonstrate that BAYESIL is the first fully-automatic publicly-accessible system that provides quantitative NMR spectral profiling effectively—with an accuracy on these biofluids that meets or exceeds the performance of trained experts. We anticipate this tool will usher in high-throughput metabolomics and enable a wealth of new applications of NMR in clinical settings. BAYESIL is accessible at http://www.bayesil.ca.  相似文献   
94.
PurposeTo compare the rate of mean deviation (MD) change on 24-2 versus 10-2 VFs in treated glaucomatous eyes with 5 or more examinations.MethodsIn a retrospective study, 24-2 and 10-2 VFs of 131 glaucoma patients (167 eyes) who had undergone at least 5 VFs examinations during their follow-up were analyzed. All these patients had VF defects both on 24-2 and 10-2 VFs. Rates of MD change were calculated using best linear unbiased predictions (BLUP).ResultsMedian age, MD on 24-2 VF at baseline, number of VFs performed during follow-up and follow-up duration were 55 years, -16.9 dB, 9 and 9 years respectively. Median rate of MD change was significantly greater (p<0.001) on 10-2 VF (-0.26 dB/year; interquartile range [IQR]: -0.47, -0.11) compared to 24-2 VFs (-0.19 dB/year; IQR: -0.41, -0.03). Comparing the rates of MD change in eyes with different severities of VF loss (early [MD better than -6 dB], moderate [-6 dB to -12 dB], advanced [-12 to -20 dB] and severe [MD worse than -20 dB]) at baseline (based on the MD on 24-2 VF), median rate of MD change was comparable between 10-2 and 24-2 VFs in mild (-0.45 dB/year vs. -0.40 dB/year, P = 0.42) and moderate (-0.32 dB/year vs. -0.40 dB/year, P = 0.26) VF loss categories, while the same were significantly greater on 10-2 VFs in advanced (-0.28 dB/year vs. -0.21 dB/year, P = 0.04) and severe (-0.18 dB/year vs. -0.06 dB/year, P<0.001) VF loss categories.ConclusionsIn patients with VF defects both on 24-2 and 10-2 VFs, evaluating the rate of MD change on 10-2 VFs may help in better estimation of glaucoma progression, especially so in eyes with advanced glaucoma at baseline.  相似文献   
95.
SarA, a Staphylococcus aureus-specific dimeric protein, modulates the expression of numerous proteins including various virulence factors. Interestingly, S. aureus synthesizes multiple SarA paralogs seemingly for optimizing the expression of its virulence factors. To understand the domain structure/flexibility and the folding/unfolding mechanism of the SarA protein family, we have studied a recombinant SarA (designated rSarA) using various in vitro probes. Limited proteolysis of rSarA and the subsequent analysis of the resulting protein fragments suggested it to be a single-domain protein with a long, flexible C-terminal end. rSarA was unfolded by different mechanisms in the presence of different chemical and physical denaturants. While urea-induced unfolding of rSarA occurred successively via the formation of a dimeric and a monomeric intermediate, GdnCl-induced unfolding of this protein proceeded through the production of two dimeric intermediates. The surface hydrophobicity and the structures of the intermediates were not identical and also differed significantly from those of native rSarA. Of the intermediates, the GdnCl-generated intermediates not only possessed a molten globule-like structure but also exhibited resistance to dissociation during their unfolding. Compared to the native rSarA, the intermediate that was originated at lower GdnCl concentration carried a compact shape, whereas, other intermediates owned a swelled shape. The chemical-induced unfolding, unlike thermal unfolding of rSarA, was completely reversible in nature.  相似文献   
96.
Visceral leishmaniasis is a vector-borne disease caused by an obligate intracellular protozoan parasite Leishmania donovani. The molecular mechanism involved in internalization of Leishmania is poorly understood. The entry of Leishmania involves interaction with the plasma membrane of host cells. We have previously demonstrated the requirement of host membrane cholesterol in the binding and internalization of L. donovani into macrophages. In the present work, we explored the role of the host actin cytoskeleton in leishmanial infection. We observed a dose-dependent reduction in the attachment of Leishmania promastigotes to host macrophages upon destabilization of the actin cytoskeleton by cytochalasin D. This is accompanied by a concomitant reduction in the intracellular amastigote load. We utilized a recently developed high resolution microscopy-based method to quantitate cellular F-actin content upon treatment with cytochalasin D. A striking feature of our results is that binding of Leishmania promastigotes and intracellular amastigote load show close correlation with cellular F-actin level. Importantly, the binding of Escherichia coli remained invariant upon actin destabilization of host cells, thereby implying specific involvement of the actin cytoskeleton in Leishmania infection. To the best of our knowledge, these novel results constitute the first comprehensive demonstration on the specific role of the host actin cytoskeleton in Leishmania infection. Our results could be significant in developing future therapeutic strategies to tackle leishmaniasis.  相似文献   
97.
The taxonomic ambiguity of the Indian mud crab (genus Scylla de Hann 1833) is still a cause of concern as several papers have been published with misleading identification. This is the first attempt to resolve the taxonomic uncertainty of the mud crab commonly available in Indian coastal waters using molecular genetic markers (ITS-1 and sequencing of COI gene) combined with traditional morphometry. Additionally, we developed a PCR method by which Indian mud crab species can be identified rapidly and effectively. The results clearly indicate that the green morph of the Indian mud crab is Scylla serrata and the brown morph is S. olivacea. The S. serrata commonly mentioned in the literature from India is S. olivacea; the S. tranquebarica noted by many Indian researchers should belong to S. serrata. Caution should be taken when interpreting or implementing the biological, molecular, and aquaculture data in the literature.  相似文献   
98.
Aeromonas hydrophila is frequently reported from arsenic affected areas. Present study was aimed to determine the effect of arsenic and temperature on growth of A. hydrophila. The bacteria were isolated from naturally infected fish from a water body in Birbhum, West-Bengal, India, which is reported to be an arsenic-free area. Arsenic concentration in natural aquatic reservoirs (e.g., pond, lake or river) varies from 0–6 mg/L. No significant change in bacterial growth was observed within this range of arsenic exposure. However, variation in temperature impacted the growth of A. hydrophila. A single dimension model was constructed using simple logistic equation. Rate parameters of the model were derived from the experimental observations. Comparison of model results and laboratory observations gives a good conformity regarding the effect of variation of arsenic concentration and temperature change on growth of this bacterium. From the analysis of this model we further get the idea that the maximum growth of A. hydrophila is supposed to be at 31.4°C in absence of arsenic, whereas at 477 mg/L arsenic concentration, the growth of the bacteria totally stops at 30°C.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号