首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   2篇
  2021年   7篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   7篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1987年   1篇
排序方式: 共有43条查询结果,搜索用时 24 毫秒
21.
BACKGROUND: Benzo(a)pyrene (BaP), anthracene (ANTH) and chrysene (CHRY) are polynuclear aromatic hydrocarbons (PAHs) implicated in renal toxicity and carcinogenesis. These PAHs elicit cell type-specific effects that help predict toxicity outcomes in vitro and in vivo. While BaP and ANTH selectively injure glomerular mesangial cells, and CHRY targets cortico-tubular epithelial cells, binary or ternary mixtures of these hydrocarbons markedly reduce the overall cytotoxic potential of individual hydrocarbons. METHODS: To study the biochemical basis of these antagonistic interactions, renal glomerular mesangial cells were challenged with BaP alone (0.03 - 30 microM) or in the presence of ANTH (3 microM) or CHRY (3 microM) for 24 hr. Total RNA and protein will be harvested for Northern analysis and measurements of aryl hydrocarbon hydroxylase (AHH) and ethoxyresorufin-O-deethylase (EROD) activity, respectively, to evaluate cytochrome P450 mRNA and protein inducibility. Cellular hydrocarbon uptake and metabolic profiles of PAHs were analyzed by high performance liquid chromatography (HPLC). RESULTS: Combined hydrocarbon treatments did not influence the cellular uptake of individual hydrocarbons. ANTH or CHRY strongly repressed BaP-inducible cytochrome P450 mRNA and protein expression, and markedly inhibited oxidative BaP metabolism. CONCLUSION: These findings indicate that antagonistic interactions among nephrocarcinogenic PAHs involve altered expression of cytochrome P450s that modulate bioactivation profiles and nephrotoxic/ nephrocarcinogenic potential.  相似文献   
22.
23.
We tested the possibility that neuropeptide Y (NPY) may contribute to the pulmonary hypertension that occurs after massive sympathetic activation produced by intracisternal veratrine administration in the chloralose-anesthetized dog. In six dogs, veratrine caused arterial NPY-like immunoreactivity (NPY-LI) to rise from 873 +/- 150 (SE) pg/ml to peak values of 3,780 +/- 666 pg/ml by 60-120 min. (In 3 animals, adrenalectomy significantly reduced the increases in NPY-LI.) In five additional dogs, we infused porcine NPY for 30 min in doses that increased arterial NPY-LI to 8,354 +/- 1,514 pg/ml and observed only minor changes in pulmonary hemodynamics. In three isolated perfused canine left lower lung lobe (LLL) preparations, increasing doses of NPY were administered, producing levels of plasma NPY-LI, at the highest dose, that exceeded those observed after veratrine administration by three orders of magnitude. No changes in LLL arterial or double-occlusion capillary pressures were observed at any dose. Similarly, no changes in LLL hemodynamics were observed in three additional lobes when NPY was administered while norepinephrine was being infused. We conclude that it is unlikely that NPY plays a role as a circulating vasoactive agent in producing the pulmonary hypertension and edema that occur in this model.  相似文献   
24.
Ellman MB  Kim JS  An HS  Chen D  KC R  An J  Dittakavi T  van Wijnen AJ  Cs-Szabo G  Li X  Xiao G  An S  Kim SG  Im HJ 《Gene》2012,505(2):283-290
MyD88 is an adapter protein that links toll-like receptors (TLRs) and Interleukin-1 receptors (IL-1Rs) with downstream signaling molecules. The MyD88 has been found to be an essential mediator in the development of osteoarthritis in articular cartilage. However, the role of the MyD88 pathway has yet to be elucidated in the intervertebral disk (IVD). Using in vitro techniques, we analyzed the effect of MyD88 pathway-specific inhibition on the potent inflammatory and catabolic mediator LPS and IL-1 in bovine and human nucleus pulposus (NP) cells by assessing matrix-degrading enzyme expression, including matrix metalloproteases (MMPs) and a disintegrin-like and metalloprotease with thrombospondin motifs (ADAMTS family). We also analyzed inhibition of MyD88 in the regulation of inducible nitric oxide synthase and TLR-2. Finally, we used an ex vivo organ culture model to assess the effects of MyD88 inhibitor (MyD88i) on catabolic factor-induced disk degeneration in mice lumbar disks. In bovine NP cells, MyD88i potently antagonizes LPS- or IL-1-mediated induction of cartilage-degrading enzyme production, including MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5. MyD88i also attenuates the LPS- or IL-1-mediated induction of iNOS and TLR-2 gene expression. Our ex vivo findings reveal inhibition of MyD88 via counteraction of IL-1-mediated proteoglycan depletion. The findings from this study demonstrate the potent anti-inflammatory and anti-catabolic effects of inhibition of MyD88 pathway inhibition on IVD homeostasis, suggesting a potential therapeutic benefit of a MyD88i in degenerative disk disease in the future.  相似文献   
25.

Background

Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families.

Results

The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function.

Conclusions

Our results demonstrate that the method we present here using a k- modes site clustering algorithm based on interdependency evaluation among sites obtained from a sequence alignment of homologous proteins can provide significant insights into the complex, hierarchical inter-residue structural relationships within the 3D structure of a protein family.
  相似文献   
26.
27.
28.

Background  

A key physiological mechanism employed by multicellular organisms is apoptosis, or programmed cell death. Apoptosis is triggered by the activation of caspases in response to both extracellular (extrinsic) and intracellular (intrinsic) signals. The extrinsic and intrinsic pathways are characterized by the formation of the death-inducing signaling complex (DISC) and the apoptosome, respectively; both the DISC and the apoptosome are oligomers with complex formation dynamics. Additionally, the extrinsic and intrinsic pathways are coupled through the mitochondrial apoptosis-induced channel via the Bcl-2 family of proteins.  相似文献   
29.

Background

16 can activate phospholipase Cβ (PLCβ) directly like Gαq. It also couples to tetratricopeptide repeat 1 (TPR1) which is linked to Ras activation. It is unknown whether PLCβ and TPR1 interact with the same regions on Gα16. Previous studies on Gαq have defined two minimal clusters of amino acids that are essential for the coupling to PLCβ. Cognate residues in Gα16 might also be essential for interacting with PLCβ, and possibly contribute to TPR1 interaction and other signaling events.

Results

Alanine mutations were introduced to the two amino acid clusters (246–248 and 259–260) in the switch III region and α3 helix of Gα16. Regulations of PLCβ and STAT3 were partially weakened by each cluster mutant. A mutant harboring mutations at both clusters generally produced stronger suppressions. Activation of Jun N-terminal kinase (JNK) by Gα16 was completely abolished by mutating either clusters. Contrastingly, phosphorylations of extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB) were not significantly affected by these mutations. The interactions between the mutants and PLCβ2 and TPR1 were also reduced in co-immunoprecipitation assays. Coupling between G16 and different categories of receptors was impaired by the mutations, with the effect of switch III mutations being more pronounced than those in the α3 helix. Mutations of both clusters almost completely abolished the receptor coupling and prevent receptor-induced Gβγ release.

Conclusion

The integrity of the switch III region and α3 helix of Gα16 is critical for the activation of PLCβ, STAT3, and JNK but not ERK or NF-κB. Binding of Gα16 to PLCβ2 or TPR1 was reduced by the mutations of either cluster. The same region could also differentially affect the effectiveness of receptor coupling to G16. The studied region was shown to bear multiple functionally important roles of G16.  相似文献   
30.
We determined if prolonged isoproterenol (Iso) infusion in rats impaired the ability of the beta(2)-adrenergic agonist terbutaline to increase alveolar liquid clearance (ALC). We infused rats with Iso (at rates of 4, 40, or 400 microg.kg(-1).h(-1)) or vehicle (0.001 N HCl) for 48 h using subcutaneously implanted miniosmotic pumps. After this time, the rats were anesthetized, and ALC was determined (by mass-balance after instillation of Ringer lactate containing albumin into the lungs) under baseline conditions and after terbutaline administration. Baseline and terbutaline-stimulated ALC in vehicle-infused rats averaged, respectively, 19.6 +/- 1.2% (SE) and 44.7 +/- 1.5%/h. The ability of terbutaline to increase ALC was eliminated at 400 microg.kg(-1).h(-1)Iso, inhibited by 26% at 40 microg.kg(-1).h(-1) Iso, and was not affected by 4 microg.kg(-1).h(-1) Iso. beta-adrenergic receptor (betaAR) density of freshly isolated alveolar epithelial type II (ATII) cells from Iso-infused rats was reduced by the 40 and 400 microg.kg(-1).h(-1) infusion rates. These data demonstrate that prolonged exposure to beta-agonists can impair the ability of beta(2)-agonists to stimulate ALC and produce ATII cell betaAR downregulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号