首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30255篇
  免费   2639篇
  国内免费   3064篇
  2024年   52篇
  2023年   360篇
  2022年   675篇
  2021年   1559篇
  2020年   1049篇
  2019年   1282篇
  2018年   1213篇
  2017年   904篇
  2016年   1308篇
  2015年   1889篇
  2014年   2274篇
  2013年   2378篇
  2012年   2908篇
  2011年   2479篇
  2010年   1633篇
  2009年   1349篇
  2008年   1747篇
  2007年   1524篇
  2006年   1335篇
  2005年   1137篇
  2004年   957篇
  2003年   808篇
  2002年   734篇
  2001年   565篇
  2000年   438篇
  1999年   509篇
  1998年   312篇
  1997年   244篇
  1996年   287篇
  1995年   223篇
  1994年   274篇
  1993年   167篇
  1992年   235篇
  1991年   195篇
  1990年   179篇
  1989年   116篇
  1988年   87篇
  1987年   79篇
  1986年   54篇
  1985年   64篇
  1984年   50篇
  1983年   40篇
  1982年   39篇
  1981年   25篇
  1980年   17篇
  1979年   25篇
  1977年   15篇
  1976年   17篇
  1975年   15篇
  1973年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Penicillin binding proteins (PBPs) are responsible for synthesizing and modifying the bacterial cell wall, and in Escherichia coli the loss of several nonessential low-molecular-weight PBPs gives rise to abnormalities in cell shape and division. To determine whether these proteins help connect the flagellar basal body to the peptidoglycan wall, we surveyed a set of PBP mutants and found that motility in an agar migration assay was compromised by the simultaneous absence of four enzymes: PBP4, PBP5, PBP7, and AmpH. A wild-type copy of any one of these restored migration, and complementation depended on the integrity of the PBP active-site serine. However, the migration defect was caused by the absence of flagella instead of improper flagellar assembly. Migration was restored if the flhDC genes were overexpressed or if the rcsB or cpxR genes were deleted. Thus, migration was inhibited because the Rcs and Cpx stress response systems were induced in the absence of these four specific PBPs. Furthermore, in this situation Rcs induction depended on the presence of CpxR. The results imply that small changes in peptidoglycan structure are sufficient to activate these stress responses, suggesting that a specific cell wall fragment may be the signal being sensed. The fact that four PBPs must be inactivated may explain why large perturbations to the envelope are required to induce stress responses.  相似文献   
992.
Inter-regulation of adrenergic receptors (ARs) via cross-talk is a long appreciated but mechanistically unclear physiological phenomenon. Evidence from the AR literature and our own extensive studies on regulation of α2AARs by the scaffolding protein spinophilin have illuminated a potential novel mechanism for cross-talk from β to α2ARs. In the present study, we have characterized a mode of endogenous AR cross-talk in native adrenergic neurons whereby canonical βAR-mediated signaling modulates spinophilin-regulated α2AAR endocytosis through PKA. Our findings demonstrate that co-activation of β and α2AARs, either by application of endogenous agonist or by simultaneous stimulation with distinct selective agonists, results in acceleration of endogenous α2AAR endocytosis in native neurons. We show that receptor-independent PKA activation by forskolin is sufficient to accelerate α2AAR endocytosis and that α2AAR stimulation alone drives accelerated endocytosis in spinophilin-null neurons. Endocytic response acceleration by β/α2AAR co-activation is blocked by PKA inhibition and lost in spinophilin-null neurons, consistent with our previous finding that spinophilin is a substrate for phosphorylation by PKA that disrupts its interaction with α2AARs. Importantly, we show that α2AR agonist-mediated α2AAR/spinophilin interaction is blocked by βAR co-activation in a PKA-dependent fashion. We therefore propose a novel mechanism for cross-talk from β to α2ARs, whereby canonical βAR-mediated signaling coupled to PKA activation results in phosphorylation of spinophilin, disrupting its interaction with α2AARs and accelerating α2AAR endocytic responses. This mechanism of cross-talk has significant implications for endogenous adrenergic physiology and for therapeutic targeting of β and α2AARs.  相似文献   
993.
All-trans-retinoic acid (atRA) is an important morphogen involved in many developmental processes, including neural differentiation, body axis formation, and organogenesis. During early embryonic development, atRA is synthesized from all-trans-retinal (atRAL) in an irreversible reaction mainly catalyzed by retinal dehydrogenase 2 (aldh1a2), whereas atRAL is converted from all-trans-retinol via reversible oxidation by retinol dehydrogenases, members of the short-chain dehydrogenase/reductase family. atRA is degraded by cytochrome P450, family 26 (cyp26). We have previously identified a short-chain dehydrogenase/reductase 3 (dhrs3), which showed differential expression patterns in Xenopus embryos. We show here that the expression of dhrs3 was induced by atRA treatment and overexpression of Xenopus nodal related 1 (xnr1) in animal cap assay. Overexpression of dhrs3 enhanced the phenotype of excessive cyp26a1. In embryos overexpressing aldh1a2 or retinol dehydrogenase 10 (rdh10) in the presence of their respective substrates, Dhrs3 counteracted the action of Aldh1a2 or Rdh10, indicating that retinoic acid signaling is attenuated. Knockdown of Dhrs3 by antisense morpholino oligonucleotides resulted in a phenotype of shortened anteroposterior axis, reduced head structure, and perturbed somitogenesis, which were also found in embryos treated with an excess of atRA. Examination of the expression of brachyury, not, goosecoid, and papc indicated that convergent extension movement was defective in Dhrs3 morphants. Taken together, these studies suggest that dhrs3 participates in atRA metabolism by reducing atRAL levels and is required for proper anteroposterior axis formation, neuroectoderm patterning, and somitogenesis.  相似文献   
994.
The subcellular localization of the exoribonuclease RNase II is not known despite the advanced biochemical characterization of the enzyme. Here we report that RNase II is organized into cellular structures that appear to coil around the Escherichia coli cell periphery and that RNase II is associated with the cytoplasmic membrane by its amino-terminal amphipathic helix. The helix also acts as an autonomous transplantable membrane binding domain capable of directing normally cytoplasmic proteins to the membrane. Assembly of the organized cellular structures of RNase II required the RNase II amphipathic membrane binding domain. Co-immunoprecipitation of the protein from cell extracts indicated that RNase II interacts with itself. The RNase II self-interaction and the ability of the protein to assemble into organized cellular structures required the membrane binding domain. The ability of RNase II to maintain cell viability in the absence of the exoribonuclease polynucleotide phosphorylase was markedly diminished when the RNase II cellular structures were lost due to changes in the amphipathicity of the amino-terminal helix, suggesting that membrane association and assembly of RNase II into organized cellular structures play an important role in the normal function of the protein within the bacterial cell.  相似文献   
995.
996.
In this study, the cDNA sequence encoding interleukin‐1 (Il‐1) receptor‐like protein of orange‐spotted grouper Epinephelus coioides was obtained. The newly identified sequence was named soluble type I Il‐1 receptor (sIl‐1rI) owing to its structural composition, which had two Ig‐like domains, lack of transmembrane region and the Toll/interleukin‐1 receptor (TIR) domain, similar to the brown rat Rattus norvegicus soluble Il‐1rI. In addition, sequence comparison and phylogenetic analysis indicated that E. coioides sequence had a closer relationship with Il‐1rI than Il‐1rII. Real‐time PCR revealed that sil‐1rI mRNA expression presented a process of decrease, restoration and increase in Cryptocaryon irritans‐infected E. coioides. The negative correlation between Il‐1β and sil‐1rI mRNA in C. irritans‐infected head‐kidney implied the potential negative regulatory role of sil‐1rI in E. coioides Il‐1 system. The leucocytes incubated with lipopolysaccharide or polyriboinosinic polyribocytidylic acid exhibited different expression profiles of sil‐1rI. Recombinant Il‐1β (rIl‐1β) protein was capable of inducing sil‐1rI mRNA under the concentration of 100 ng ml?1, suggesting that high dosage or excess Il‐1β would stimulate the expression of sil‐1rI to maintain the homoeostasis of E. coioides Il‐1 system. For the first time, the role of teleost Il‐1rI in parasite infection has been identified, and soluble Il‐1r was found in fish.  相似文献   
997.
Epstein-Barr virus (EBV) alters the regulation and expression of a variety of cytokines in its host cells to modulate host immune surveillance and facilitate viral persistence. Using cytokine antibody arrays, we found that, in addition to the cytokines reported previously, two chemotactic cytokines, CCL3 and CCL4, were induced in EBV-infected B cells and were expressed at high levels in all EBV-immortalized lymphoblastoid cell lines (LCLs). Furthermore, EBV latent membrane protein 1 (LMP1)-mediated Jun N-terminal protein kinase activation was responsible for upregulation of CCL3 and CCL4. Inhibition of CCL3 and CCL4 in LCLs using a short hairpin RNA approach or by neutralizing antibodies suppressed cell proliferation and caused apoptosis, indicating that autocrine CCL3 and CCL4 are required for LCL survival and growth. Importantly, significant amounts of CCL3 were detected in EBV-positive plasma from immunocompromised patients, suggesting that EBV modulates this chemokine in vivo. This study reveals the regulatory mechanism and a novel function of CCL3 and CCL4 in EBV-infected B cells. CCL3 might be useful as a therapeutic target in EBV-associated lymphoproliferative diseases and malignancies.  相似文献   
998.
Human cytomegalovirus (HCMV), a betaherpesvirus, can cause severe disease in immunosuppressed patients and following congenital infection. A vaccine that induces both humoral and cellular immunity may be required to prevent congenital infection. Dense bodies (DBs) are complex, noninfectious particles produced by HCMV-infected cells and may represent a vaccine option. As knowledge of the antigenicity and immunogenicity of DB is incomplete, we explored characterization methods and defined DB production methods, followed by systematic evaluation of neutralization and cell-mediated immune responses to the DB material in BALB/c mice. DBs purified from Towne-infected cultures treated with the viral terminase inhibitor 2-bromo-5,6-dichloro-1-beta-d-ribofuranosyl benzimidazole riboside (BDCRB) were characterized by nanoparticle tracking analysis (NTA), two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), immunoblotting, quantitative enzyme-linked immunosorbent assay, and other methods. The humoral and cellular immune responses to DBs were compared to the immunogenicity of glycoprotein B (gB) administered with the adjuvant AddaVax (gB/AddaVax). DBs induced neutralizing antibodies that prevented viral infection of cultured fibroblasts and epithelial cells and robust cell-mediated immune responses to multiple viral proteins, including pp65, gB, and UL48. In contrast, gB/AddaVax failed to induce neutralizing antibodies that prevented infection of epithelial cells, highlighting a critical difference in the humoral responses induced by these vaccine candidates. Our data advance the potential for the DB vaccine approach, demonstrate important immunogenicity properties, and strongly support the further evaluation of DBs as a CMV vaccine candidate.  相似文献   
999.
The replication and life cycle of the influenza virus is governed by an intricate network of intracellular regulatory events during infection, including interactions with an even more complex system of biochemical interactions of the host cell. Computational modeling and systems biology have been successfully employed to further the understanding of various biological systems, however, computational studies of the complexity of intracellular interactions during influenza infection is lacking. In this work, we present the first large-scale dynamical model of the infection and replication cycle of influenza, as well as some of its interactions with the host’s signaling machinery. Specifically, we focus on and visualize the dynamics of the internalization and endocytosis of the virus, replication and translation of its genomic components, as well as the assembly of progeny virions. Simulations and analyses of the models dynamics qualitatively reproduced numerous biological phenomena discovered in the laboratory. Finally, comparisons of the dynamics of existing and proposed drugs, our results suggest that a drug targeting PB1:PA would be more efficient than existing Amantadin/Rimantaine or Zanamivir/Oseltamivir.  相似文献   
1000.
Mortierella alpina is a filamentous fungus commonly found in soil that is able to produce lipids in the form of triacylglycerols that account for up to 50% of its dry weight. Analysis of the M. alpina genome suggests that there is a phenylalanine-hydroxylating system for the catabolism of phenylalanine, which has never been found in fungi before. We characterized the phenylalanine-hydroxylating system in M. alpina to explore its role in phenylalanine metabolism and its relationship to lipid biosynthesis. Significant changes were found in the profile of fatty acids in M. alpina grown on medium containing an inhibitor of the phenylalanine-hydroxylating system compared to M. alpina grown on medium without inhibitor. Genes encoding enzymes involved in the phenylalanine-hydroxylating system (phenylalanine hydroxylase [PAH], pterin-4α-carbinolamine dehydratase, and dihydropteridine reductase) were expressed heterologously in Escherichia coli, and the resulting proteins were purified to homogeneity. Their enzymatic activity was investigated by high-performance liquid chromatography (HPLC) or visible (Vis)-UV spectroscopy. Two functional PAH enzymes were observed, encoded by distinct gene copies. A novel role for tetrahydrobiopterin in fungi as a cofactor for PAH, which is similar to its function in higher life forms, is suggested. This study establishes a novel scheme for the fungal degradation of an aromatic substance (phenylalanine) and suggests that the phenylalanine-hydroxylating system is functionally significant in lipid metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号