首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Chemokines are likely to play important roles in the pathophysiology of diseases associated with Epstein-Barr virus (EBV). Here, we have analyzed the repertoire of chemokines expressed by EBV-infected B cells. EBV infection of B cells induced expression of TARC/CCL17 and MDC/CCL22, which are known to attract Th2 cells and regulatory T cells via CCR4, and also upregulated constitutive expression of MIP-1 alpha/CCL3, MIP-1 beta/CCL4, and RANTES/CCL5, which are known to attract Th1 cells and cytotoxic T cells via CCR5. Accordingly, EBV-immortalized B cells secreted these chemokines, especially CCL3, CCL4, and CCL22, in large quantities. EBV infection or stable expression of LMP1 also induced CCL17 and CCL22 in a B-cell line, BJAB. The inhibitors of the TRAF/NF-kappa B pathway (BAY11-7082) and the p38/ATF2 pathway (SB202190) selectively suppressed the expression of CCL17 and CCL22 in EBV-immortalized B cells and BJAB-LMP1. Consistently, transient-transfection assays using CCL22 promoter-reporter constructs demonstrated that two NF-kappa B sites and a single AP-1 site were involved in the activation of the CCL22 promoter by LMP1. Finally, serum CCL22 levels were significantly elevated in infectious mononucleosis. Collectively, LMP1 induces CCL17 and CCL22 in EBV-infected B cells via activation of NF-kappa B and probably ATF2. Production of CCL17 and CCL22, which attract Th2 and regulatory T cells, may help EBV-infected B cells evade immune surveillance by Th1 cells. However, the concomitant production of CCL3, CCL4, and CCL5 by EBV-infected B cells may eventually attract Th1 cells and cytotoxic T cells, leading to elimination of EBV-infected B cells at latency III and to selection of those with limited expression of latent genes.  相似文献   

2.
The common pathogen Epstein-Barr virus (EBV) transforms normal human B cells and can cause cancer. Latent membrane protein 2A (LMP2A) of EBV supports activation and proliferation of infected B cells and is expressed in many types of EBV-associated cancer. It is not clear how latent EBV infection and cancer escape elimination by host immunity, and it is unknown whether LMP2A can influence the interaction of EBV-infected cells with the immune system. We infected primary B cells with EBV deleted for LMP2A, and established lymphoblastoid cell lines (LCLs). We found that CD8+ T cell clones showed higher reactivity against LMP2A-deficient LCLs compared to LCLs infected with complete EBV. We identified several potential mediators of this immunomodulatory effect. In the absence of LMP2A, expression of some EBV latent antigens was elevated, and cell surface expression of MHC class I was marginally increased. LMP2A-deficient LCLs produced lower amounts of IL-10, although this did not directly affect CD8+ T cell recognition. Deletion of LMP2A led to several changes in the cell surface immunophenotype of LCLs. Specifically, the agonistic NKG2D ligands MICA and ULBP4 were increased. Blocking experiments showed that NKG2D activation contributed to LCL recognition by CD8+ T cell clones. Our results demonstrate that LMP2A reduces the reactivity of CD8+ T cells against EBV-infected cells, and we identify several relevant mechanisms.  相似文献   

3.
4.
5.
To evaluate the role of Epstein-Barr Virus (EBV) nuclear antigen 3A (EBNA3A) in the continuous proliferation of EBV-infected primary B lymphocytes as lymphoblastoid cell lines (LCLs), we derived LCLs that are infected with a recombinant EBV genome that expresses EBNA3A fused to a 4-hydroxy-tamoxifen (4HT)-dependent mutant estrogen receptor hormone binding domain (EBNA3AHT). The LCLs grew similarly to wild-type LCLs in medium with 4HT despite a reduced level of EBNA3AHT fusion protein expression. In the absence of 4HT, EBNA3AHT moved from the nucleus to the cytoplasm and was degraded. EBNA3AHT-infected LCLs were unable to grow in medium without 4HT. The precise time to growth arrest varied inversely with cell density. Continued maintenance in medium without 4HT resulted in cell death, whereas readdition of 4HT restored cell growth. Expression of other EBNAs and LMP1, of CD23, and of c-myc was unaffected by EBNA3A inactivation. Wild-type EBNA3A expression from an oriP plasmid transfected into the LCLs protected the EBNA3AHT-infected LCLs from growth arrest and death in medium without 4HT, whereas EBNA3B or EBNA3C expression was unable to protect the LCLs from growth arrest and death. These experiments indicate that EBNA3A has a unique and critical role for the maintenance of LCL growth and ultimately survival. The EBNA3AHT-infected LCLs are also useful for genetic and biochemical analyses of the role of EBNA3A domains in LCL growth.  相似文献   

6.
Epstein-Barr virus (EBV) infection in vitro immortalizes primary B cells and generates B lymphoblastoid cell lines (LCLs). These EBV-LCLs have been used for several purposes in immunological and genetic studies, but some trials involving these transformations fail for unknown reasons, and several EBV-LCLs do not grow in normal culture. In this study, we improved the immortalization method by CD19 and B-cell receptor (BCR) co-ligation. This method shortens the time required for the immortalization and generation of EBV-LCLs but does not alter the cell phenotype of the LCLs nor the expression of the EBV genes. In particular, the CD19 and BCR co-ligation method was found to be the most effective method examined. EBV-infected B cells induced by CD19 and/or BCR ligation expressed the intracellular latent membrane protein LMP-1 earlier than EBV-infected B cells, and the expression of intracellular LMP-1 was found to be closely related to the time of immortalization. These results suggest that the modified method, using CD19 and/or BCR ligation, may efficiently generate EBV-LCLs, by expressing intracellular LMP-1 at an early stage.  相似文献   

7.

Background

Leprosy is characterized by polar clinical, histologic and immunological presentations. Previous immunologic studies of leprosy polarity were limited by the repertoire of cytokines known at the time.

Methodology

We used a candidate gene approach to measure mRNA levels in skin biopsies from leprosy lesions. mRNA from 24 chemokines and cytokines, and 6 immune cell type markers were measured from 85 Nepalese leprosy subjects. Selected findings were confirmed with immunohistochemistry.

Principal Results

Expression of three soluble mediators (CCL18, CCL17 and IL-10) and one macrophage cell type marker (CD14) was significantly elevated in lepromatous (CCL18, IL-10 and CD14) or tuberculoid (CCL17) lesions. Higher CCL18 protein expression by immunohistochemistry and a trend in increased serum CCL18 in lepromatous lesions was observed. No cytokines were associated with erythema nodosum leprosum or Type I reversal reaction following multiple comparison correction. Hierarchical clustering suggested that CCL18 was correlated with cell markers CD209 and CD14, while neither CCL17 nor CCL18 were highly correlated with classical TH1 and TH2 cytokines.

Conclusions

Our findings suggest that CCL17 and CCL18 dermal expression is associated with leprosy polarity.  相似文献   

8.
Lymphoblastoid cell lines (LCLs) are commonly used in molecular genetics, supplying DNA for the HapMap and 1000 Genomes Projects, used to test chemotherapeutic agents, and informing the basis of a number of population genetics studies of gene expression. The process of transforming human B cells into LCLs requires the presence of Epstein-Barr virus (EBV), a double-stranded DNA virus which through B-cell immortalisation maintains an episomal virus genome in every cell of an LCL at variable copy numbers. Previous studies have reported that EBV alters host-gene expression and EBV copy number may be under host genetic control. We performed a genome-wide association study of EBV genome copy number in LCLs and found the phenotype to be highly heritable, although no individual SNPs achieved a significant association with EBV copy number. The expression of two host genes (CXCL16 and AGL) was positively correlated and expression of ADARB2 was negatively correlated with EBV copy number in a genotype-independent manner. This study shows an association between EBV copy number and the gene expression profile of LCLs, and suggests that EBV copy number should be considered as a covariate in future studies of host gene expression in LCLs.  相似文献   

9.
Epstein-Barr virus (EBV) transformation of B cells from fetal cord blood in vitro varies depending on the individual sample. When a single preparation of EBV was simultaneously used to transform fetal cord blood samples from six different individuals, the virus transformation titer varied from less than zero to 10(5.9). We show that this variation in EBV transformation is associated with a marked primary immune response in cord blood samples predominately involving CD4(+) T cells and CD16(+) CD56(+) NK cells. After virus challenge both CD4(+) T cells and NK cells in fetal cord blood cultures expressed the lymphocyte activation marker CD69. The cytotoxic response against autologous EBV-infected lymphoblastoid cell line (LCL) targets correlated with the number of CD16(+) CD69(+) cells and was inversely correlated with the virus transformation titer. Although NK activity was detected in fresh cord blood and increased following activation by the virus, killing of autologous LCLs was detected only following activation by exposure to the virus. Both activated CD4(+) T cells and CD16(+) NK cells were independently able to kill autologous LCLs. Both interleukin-2 and gamma interferon were produced by CD4(+) T cells after virus challenge. The titer of EBV was lower when purified B cells were used than when whole cord blood was used. Addition of monocytes restored the virus titer, while addition of resting T cells or EBV-activated CD4(+) T-cell blasts reduced the virus titer. We conclude that there are primary NK-cell and Th1-type CD4(+) T-cell responses to EBV in fetal cord blood that limit the expansion of EBV-infected cells and in some cases eliminate virus infection in vitro.  相似文献   

10.
Latent membrane protein 2A (LMP2A) is expressed in latent Epstein-Barr virus (EBV) infection. We have demonstrated that Nedd4 family ubiquitin-protein ligases (E3s), AIP4, WWP2/AIP2, and Nedd4, bind specifically to two PY motifs present within the LMP2A amino-terminal domain. In this study, LMP2A PY motif mutant viruses were constructed to investigate the role of the LMP2A PY motifs. AIP4 was found to specifically associate with the LMP2A PY motifs in EBV-transformed lymphoblastoid cell lines (LCLs), extending our original observation to EBV-infected cells. Mutation of both of the LMP2A PY motifs resulted in an absence of binding of AIP4 to LMP2A, which resulted in an increase in the expression of Lyn and the constitutive hyperphosphorylation of LMP2A and an unknown 120-kDa protein. In addition, there was a modest increase in the constitutive phosphorylation of Syk and an unidentified 60-kDa protein. These results indicate that the PY motifs contained within LMP2A are important in regulating phosphorylation in EBV-infected LCLs, likely through the regulation of Lyn activity by specifically targeting the degradation of Lyn by ubiquination by Nedd4 family E3s. Despite differences between PY motif mutant LCLs and wild-type LCLs, the PY motif mutants still exhibited a block in B-cell receptor (BCR) signal transduction as measured by the induction of tyrosine phosphorylation and BZLF1 expression following BCR activation. EBV-transformed LCLs with mutations in the PY motifs were not different from wild-type LCLs in serum-dependent cell growth. Protein stability of LMP1, which colocalizes with LMP2A, was not affected by the LMP2A-associated E3s.  相似文献   

11.
Using second-site homologous recombination, Epstein-Barr virus (EBV) recombinants were constructed which carry an LMP2A mutation terminating translation at codon 19. Despite the absence of LMP2A or LMP2A cross-reactive protein, the recombinants were able to initiate and maintain primary B-lymphocyte growth transformation in vitro. EBNA1, EBNA2, and LMP1 expression was unaffected by the LMP2A mutation. The LMP2A mutant recombinant EBV-infected lymphoblastoid cell lines (LCLs) were identical to wild-type recombinant EBV-infected control LCLs with respect to initial outgrowth, subsequent growth, sensitivity to limiting cell dilution, sensitivity to low serum, and growth in soft agarose. The permissivity of LCLs for lytic EBV infection and virus replication was also unaffected by the LMP2A mutation.  相似文献   

12.
Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) plays a critical role in transformation of primary B lymphocytes to continuously proliferating lymphoblastoid cell lines (LCLs). To identify cellular genes in B cells whose expression is regulated by EBNA-LP, we performed microarray expression profiling on an EBV-negative human B-cell line, BJAB cells, that were transduced by a retroviral vector expressing the EBV EBNA-LP (BJAB-LP cells) and on BJAB cells that were transduced with a control vector (BJAB-vec cells). Microarray analysis led to the identification of a cellular gene encoding the CC chemokine TARC as a novel target gene that was induced by EBNA-LP. The levels of TARC mRNA expression and TARC secretion were significantly up-regulated in BJAB-LP compared with BJAB-vec cells. Induction of TARC was also observed when a subline of BJAB cells was converted by a recombinant EBV. Among the EBV-infected B-cell lines with the latency III phenotype that were tested, the LCLs especially secreted significantly high levels of TARC. The level of TARC secretion appeared to correlate with the level of full-length EBNA-LP expression. These results indicate that EBV infection induces TARC expression in B cells and that EBNA-LP is one of the viral gene products responsible for the induction.  相似文献   

13.
14.
15.
16.
17.
18.
Despite their widespread expression, the in vivo recruitment activities of CCL19 (EBV-induced molecule 1 ligand chemokine) and CXCL12 (stromal cell-derived factor 1) have not been established. Furthermore, although CXCL13 (B lymphocyte chemoattractant) has been shown to induce lymphoid neogenesis through induction of lymphotoxin (LT)alpha1beta2, it is unclear whether other homeostatic chemokines have this property. In this work we show that ectopic expression in pancreatic islets of CCL19 leads to small infiltrates composed of lymphocytes and dendritic cells and containing high endothelial venules and stromal cells. Ectopic CXCL12 induced small infiltrates containing few T cells but enriched in dendritic cells, B cells, and plasma cells. Comparison of CCL19 transgenic mice with mice expressing CCL21 (secondary lymphoid tissue chemokine) revealed that CCL21 induced larger and more organized infiltrates. A more significant role for CCL21 is also suggested in lymphoid tissues, as CCL21 protein was found to be present in lymph nodes and spleen at much higher concentrations than CCL19. CCL19 and CCL21 but not CXCL12 induced LTalpha1beta2 expression on naive CD4 T cells, and treatment of CCL21 transgenic mice with LTbetaR-Fc antagonized development of organized lymphoid structures. LTalpha1beta2 was also induced on naive T cells by the cytokines IL-4 and IL-7. These studies establish that CCL19 and CXCL12 are sufficient to mediate cell recruitment in vivo and they indicate that LTalpha1beta2 may function downstream of CCL21, CCL19, and IL-2 family cytokines in normal and pathological lymphoid tissue development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号